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PREFACE 

The gravitational attraction of a celestial body on a particle increases be- 
yond all LLmits whenever the particle approaches the attracting center and finally 
collides with it. Consequently the differential equations of motion present singu- 
larities at collision; the art of removing such singularities by appropriate trans- 
formations of the coordinates and of time is called.regularization. 

Several methods for regularizing the 2-dimensional motion of a particle, sub- 
jected to gravitational forces, are known. In 1895 T.N. Thiele achieved simultane- 
ous regularization of two attracting centers and in 1915 G.D. Birkhoff found a sim- 
pler method for reaching the same goal. A remarkable regularization of the pLane 
motion of a particLe about a single attracting center was published by T.Levi-Civita 
in 1906. He introduced parabolic coordinates In the plane of motion and used the 
eccentric anomaly in place of time as the Independent variable. This procedure has 
the desirable property of transforming the equations of pure KepLer motion into lin- - 
ear differential equations, thus permitting easy integration and a simpbe theory of 
perturbations. 

Several authors have proposed to take advantage of this fact for estabLishing 
anaLyticaL as weLL as numerical methods in celestial. mechanics. In particuLar, this 
was discussed in the spring of 1964 during a symposium at the research Institute at 
Oberwolfach, Germany [16]. It was generally felt that such a theory wouLd have only 
a doubtful value if restricted to 2-dimensional motion. HappiLy, P. Kustaanheimo 
succeeded at the end of the session in constructing a 3-dimensional generalization 
of Levi-Civita's transformation by replacing compLex variables by spinors. In the 
paper [3] we reformulated this in terms of matrices, discussed the anaLytica and 
geometric properties of the transformation and outLIned the perturbation theory. 
This opened the way for further generalizations, for example the construction of a 
3-dimensionaL transformation of Birkhoff's type [17]. 

Other 3-dimensionaL reguLarisations were known before, but as far as we know 
they have not the property of generating Linear differential equatiOnS. We mention 
in this connection only the ingenious work of K.F. Sundman who established in 1913 

his famous resuLt on forever convergent expansions In the problem of the three 
bodies. 

In 1965 the National, Aeronautics and Space Administration of the U.S.A. sug- 
gested that we study the problem of regutarization with the 3-dimensionaL case as 
the prlncipaL area of research, furnish additionaL knowledge of possible types of 
trajectories and improve methods for numerical integration of trajectories. 

This research was organized as a cooperative project of NASA and the Swiss 
Federal Institute of TechnoLogy. It is my pleasant duty to express our thanks to -- - 
both organizations and to IBM for sponsoring this work. We are also Indebted to - 
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NASA's representatives Dr. E.D. Gelssler, Dr. H.A. SperLinq and Commodore C. 
Dearman for their interest, comments and heLpfuL assistance. 

It should be mentioned In this connection that this report is ihtlmateLy con- 
nected with research work done by NASA scientists. For instance R.A. Broucke [i&J 
of the Jet PropuLsion Laboratory has deveLoped a perturbation theory of the oscu- 
Latlng orbit based on [S], which 1s somewhat different from the theory contained In 
this report (cf. section 1.4); R.F. Arenstorf [lg] and H.A. Sperling [20] of 
MarshaLL Space FLight Center have pubtished remarkabLe contributions to the theory 
and application of reguLarlzation. 

NASA's scientific support has created wider Interest in celestial mechanics at 
our university and, in particuLar, Mr. P. Sturzenegger and Mr. B. Stanek have facil- 
itated our work by Investigating some speciaL problems and by carrying out computa- 
tions. We are very obLlged to them and also to Mrs. S. Eisner who, with everLasting 
energy, took care of aLL the Little detalLs involved In printing and publishing 
this report. 

FinaLLy we want to thank Mr. A. Schal, director of our computing center; he 
was always ready to heLp us and to put our programs on the Control Data 1604-A 
computer with high priority. 

Zurich, September 1966. E. StiefeL 

How to read this report 

1. A reader onLy interested in perturbations and practlcaL computations WILL skip 
the more theoretical investigations on simultaneous reguLarlsation of two at- 
tracting centers (sections 1.1.2, 1.2.2 and chapter 3). 

2. References to Literature are in square brackets. 

3. We have the custom to List on the Left-hand border of an equation the numbers 
of the previous formuLae needed for proving that equation. For instance 

(1,981 (a + b)2 = a2 + 2ab + b2 (1.99) 

means more expLicitLy: "from formula (1,98) It follows that (a + b)2 = 

a2 + 2ab + b2 and this resutt Is the new formula (1,gg) '. 

iv 



CONTENTS 

Chapter 1 1 - 45 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

I .a 

1. PRINCIPLES OF REGULARIZATION 

by E. StlefeL 

Motion In a pLane 
1 .I .I Transformation of Levi-Civita 
1.1.2 Birkhoff's Transformation 
Motion in 3-dimensionaL space 
1.2.1 The KS-Transformation 

First procedure 
1.2.2 The B3-Transformation 
KepLer motion 
1.3.1 The unperturbed motion 
1.3.2 Variation of the ebements under the InfLuence of perturbing 

forces 
Second procedure 

1.3.3 Perturbations of the eLements 
Companion procedure 

1.3.4 Ejection orbits 
The oscuLatlng KepLer motion 

Third procadure 
Companion procedure 

AnaLyticaL theory of perturbations 
1.5.1 First-order perturbations 

Fourth procedure 
1.5.2 Three-body problem 
Secutar perturbations 
1.6.1 Conservative perturbing potential 
1.6.2 Secular perturbations 
1.6.3 An exampLe 
1.6.4 An ejection orbit 
On stabiLlty and convergence 
1.7.1 Stability of pure KepLer motion 
1.7.2 Convergence of Fourier expansions 
Conctuslons 
1.8.1 General, theoreticat aspects 
1.8.2 GeneraL perturbations (DoubLe Fourier expansion) 
1.8.3 Numerical, aspects 

1 
6 

6 

10 

IO 

12 

13 

15 

15 

17 
28 

19 

19 
20 

21 

22 

23 

24 

24 

25 
26 

28 

29 
30 

32 

35 
36 

37 

41 

43 

43 

44 

44 

V 



--...-.. . -- 

Chapter 2 46 - 87 

2. COMPUTATIONAL .PROGRAMS FOR SPECIAL AND GENERAL PERTURBATIONS 

WITH REGULARIZED VARIABLES 

by M. R&sler 

2.1 The program NUMPER ("numerical perturbations") 
2.1.1 List of symbobs 
2.1.2 Underl.ylng formutae 
2.1.3 Input and output 
2.1.4 Description of the program NUMPER 
2.1.5 First numerIca example: Perturbations of a highly eccentric 

satel1,ite orbit by the moon 
2.1.6 Comparison with the cLassica\ method of Encke 

2.2 The program ANPER ("anaLyticaL perturbations") 
2.2.1 The independent variables 
2.2.2 The elements 
2.2.3 Rules for the user 
2.2.4 Remarks 
2.2.5 Fourth numerlcab example: Perturbations computed by four 

different methods 
2.2-6 Fifth numerical. example: Convergence of the Fourier expansion 

the case of an ejection orbit 
2.2:7 Sixth numericab exampLe: Convergence of the Fourier expansion 

the case of a circular orbit 
2.2.8 First-order perturbations of the orbit of the planetold Vesta 

Appendix 2.1 Program NrJMPER 
Appendix 2.2 Output of program NUMPER. First example 
Appendix 2.3 Program ANPER 
Appendix 2.4 Output of program ANPER. Fourth example 

46 

46 

48 

51 

53 

54 

57 

59 

59 
60 

61 

63 

63 

in 
67 

in 
69 
70 

71 

76 

78 

a5 

Chapter 3 88 - 115 

3. THE RESTRICTED ELLIPTIC THREE - BODY PROBLEM 
__- 

by J. WaLdvogeL 

3.1 Theory 
3.1.1 Equations of motion 
3.1.2 Regu1arlzatlon 

Fifth procedure 
3.1.3 Remarks 

Modifications of the fifth procedure for the case of 
an ejection 

aa 

88 

93 
100 

103 

105 

vi 



3.2 Examptes 
3.2.1 Transfer of a vehicle from earth to moon 
3.2.2 A 3-dimensionat periodic orbit In the restricted circular 

three-body probtem 
3.2.3 ConcLusions 

Chapter 4 116 - 124 

4. EXPERIMENTS CONCERNING NUMERICAL ERRORS 

by C.A. Burdet 

4.1 Configuration of the reference orbit 116 

4.2 NumericaL integration of the equation of motion 116 

A) CLassicaL equations of KepLer motion 116 

B) ReguLarized equations of motion 117 
4.3 Description and resuLts of the numerical, experiments 119 

A) Long term experiment 119 
B) Short term experiment 119 

4.4 ConcLusions 122 

107 
108 

112 

115 

References 123 

vii 



1. PRINCIPLES OF FLEGULARIZATION 

by E. StlefeL 

The motion of heavenLy bodies may be predicted using the theory of cLassicaL 
ceLestia'L mechanics. This theory Leads to a set of differential, equations, whose 
soLution provides the equation of the respective orbits of the various bodies. The 
standard cLassicaL methods of soLution of these equations Is very successfuL if the 
various bodies considered remain weLL apart from each other as they move in their 
orbits. However these methods become cumbersome and inaccurate If the bodies are 
InvoLved In a near-coLLislon. and break down aLLtogether if an actuaL coLLisi;n is 
InvoLved. A very Important practicaL probLem for instance concerns the motion of a 
space vehlcLe as it moves from the earth to the moon. This Is in a state of near- 
coLLlsion both at the beginning and at the end of its orbit. 

The Intention of this report Is to introduce and Investigate numericaL as weLL 
as anaLyticaL methods, which deaL with this probtem taking Into account this some- 
what shifted point of view. Such methods shouLd be abLe to compute an orbit during 
and beyond coLLlsion, and transformed into perturbation methods they shoutd con- 
verge rapidLy aLso for orbits of arbitrary high eccentricity. This ImpLies the 
Introduction of reguLarized coordinates and a reguLarlzlng time. Furthermore the 
cLassicaL orbitab ebements (incLlnation, Longitude of node, perlcenter, etc.) are 
not unambiguousLy defined as the eccentricity of the orbit approaches f (the 
major axis a remaining bounded)..For this reason, and in order to provide a con- 
venient general, theory, we introduce aLso reguLarized eLements in this paper. 

We emphasize the practicaL computational aspects and avoid Lengthy theories 
by using sources aLready avaiLabLe in the Literature. The report shouLd be readable 
however without consuLting such sources too much. 

At the end of the paper the general, properties of reguLarized methods are 
Listed. Their advantages and disadvantages in the Light of our experience, are 
discussed. 

1.1 Motion In a pLane 

A partlcLe of mass m is subjected to the gravitational force of a centraL 
body M Located at the origin of a X,, X,-pLane. (a. 1.1). A possibLe path Is a 
KepLer eLLipse focused at the origin; If the eccentricity of this eLLipse is cLose 

to I, the orbit is very cLose to a straight Line segment. In the Limiting case, 
the orbit is a straight Line segment, the partlcLe moving forwards and backwards 

on this Line, its position vector making a sharp bend of angte 2% at the origin. 
In order to remove this singutar behavlour, generalized coordinates Ud, U2 are 



introduced by mapping the physicat X-pLane ( X - X,-t LX, ) onto a parametric 
u-pLane (U - CA,+ /U, ) in such a&ay that the image of the particLe moves on a 
straight Line aLways in the same direction going beyond the origin after coLLision 
and making no turns at CoLLision. Thus the angte 2X in the physicaL pbane shouLd 
become onLy 37 In the parametric ptane. In general reguLarizing transformations 
must have the basic property that angLes at attracting centers are ha3ve.d. - --- 

7T 
#J 

L”, 
x. 1.1. - Regularizing Transformation. 

The kinetic energy 7 of the particle is a quadratic form in the generaL- 
ized veLocities &$ with coefficients depending on the position of the image 
point. If our mapping X= X(U) is conformal, at points not occupied by attracting 
matter, this form is reduced to a sum of squares, thus ensuring that each 
Lagrangian equation contains 0nLy one acceLeration Ui. We take advantage of this 
fact by restricting ourselves to conformaL transformations. The compLex varlabte x 
is then an anaLytIcaL function X(u) of the compLex argument U. We use the 
Cauchy-Riemann equations 

and we introduce the functional, determinant 

(191) 

(192) 

where L* is either f or 2. Denoting differentiation with respect to the time t 
by a dot, the veLocity P of the particLe In the physicaL plane is given by 

(193) 

and its kinetic energy by 

(134) 
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(The mass ??z of the partlcte is assumed to be -f ; in our subsequent working the 
magnitude of this mass is IrreLevant because it canceLs out of the equations of 
motion). The forces acting on the particLe are supposed to have a potentiaL that 
spaits up into a conservative potential UC+) ( eventuaLLy singuLar at centers of 
attraction) and a perturbinq potentiaL V&; tJ regutar at those centers and 
eventuaLLy depending expLicitLy on time. The Lagrangian equations of motion ivith 
respect to the generaLized coordinates U/ are then 

(1.5) 

where the potentiats u, V are written as functions of u,+ and 1 before differ- 
entiation. If we go from the parametric ptane to the physical, pLa& by our trans- 
formation, we have in generaL conservation of angbes, excepting that at the image 

points of attracting centers angLes are doubLed. Such points are unconformaL and 
the coefficient of the highest derivative in (1.5) (that is the determinant D ) 
vanishes there, thus producing a singularity of the differentlaL equation. In order 
to avoid this phenomenon a reguLarizing time - aLso caLLed fictitious time S - is 
introduced by the relations 

(1.6) 

We denote differentiation with respect to S by an accent and obtain the foLLow- 
ing modified forms of (1,5)(1,3): 

where VL is given by 

(1,7) 

On the right-hand side of (1,7) appear the perturbing forces 

s--&y 

in the parametric pLane. They may be computed from the perturbing forces ,oi in 
the physIcaL pLane by the formulae 

(1.7) becomes 

(1.9) 

This equation (l,lO), derived above for the case In which the perturbing forces can 
be derived from a potentlaL, is aLso vabld if this is not possibLe, so Long as the 
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c& are computed using (1.9). The Last step of reguLarizatlon is the etimination of 
t)* by the vis viva IntegraL 

$+U-h+W. (1#11) 

h is the constant of energy and 

the work done by the perturbing forces. The resuLt is 

(1#12) 

(1,13) 

This system of dIfferentSaL equations is perfectLy regular if the poLe of &! at an 
attracting center is compensated by an appropriate zero of D. 

A few remarks concerning initiaL conditions are in order. We have 

Eiy soLving for &,, ki, and taking into account (1.1) the formulae 

are obtained; thus from (1,6) 

(1914) 

This enabLes us to compute at instant t-J- 0 the velocities UT in the para- 

metric pLane from the given veLoclties i; in the physical pLane. Denoting vaLues 
at this instant t- S- 0 by the subscript 0, we have aLso 

(1,151 

Sometimes It Is pratical to introduce a scaLing factor x(U,9 in the 

definition of the fictitious time: 

09 - X0&. (1,161 

This sLlghtLy more generaL regularlzatlon Leads to the foLLowing basic and fInaL 
set of formuLae. 
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co,ordinates 

velocity 

time 

conservative potentiaL 

perturbing forces 

work 

or 

perturbing force 

Notations 

physIcaL space parametric space 

Transformations 

coordinates 

time 

veLocity 

xi - x; (Uj) , (for any 

dt = X0 ds 

VL 

Equations of motion 

( z&, u-9 Initial veLocity and potentiaL). 

i 1 (1,171 

(1.18) 

(1,191 

(1,20) 

(Isa) 

(1,221 

(123) 

(1,241 
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?.?.I Transformation of Levi-Civita. In the sequel, of the paper we consider onLy 
gravitationaL forces described by Newton's Law of attraction. We begin with the 
simptest case of a singLe attracting center Located at the origin of physicaL X- 
pLane; if the cLassicaL equations of motion are used, the attractive force becomes 
infinfte, if the particLe is at the origin. Levi-Clvita [I] has deveLoped in a 
famous paper a method for removing this singuLarity by introducing the parametric 
u-plane and using the simplest mapping of the u-pLane onto the x-pLane satisfy- 
ing the requirement to double angles at the origin and be conformaL eLsewhere. This 
transformation is (Fig. 1.1) 

x- u 
P L 

; x,= u, - u;, AZ - ZK, uz . (1325) 

The distance t- of the partlcLe from the origin of the physical, pLane is 

r - Ix\ = \uf = i5.$/.f , (1,261 

and from (1,2) we obtain 

With the choice A- i of the scaLing factor the equations (1,23) of motion become 

45-@+ &(fU/-+ = ,-9,. + &j w. 
i 

For the Newtonian gravitation the product (r&) Is a constant; thus the equations 
are reduced to 

4u,’ -2hu/. = k-y,. + 2 u ; w, (1,27) 

and in particular the KepLer motion about the attracting center is given by the 
differentiat equations 

4u/' - zh u,. - o (1,28) 

because no perturbing forces are acting. These equations are not 0nLy reguLar at 
the origin but aLso Linear with constant coefficients. -- This brings out the deeper 
reason for the fact, that reguLarization Is not pnly useful for coLLision orbits -- -- 
but aLso for orbits of modest eccentricity. ------ If h is negative the motion (1,28) is 

a harmonic osciLLatlon. The orbit of the image-point in the u-pLane is an eLLipse 
centered at the origin and mapped onto an eLLipse of the physical, pLane focused at 
the central, body. 

1.1.2 Birkhoff's Transformation. For the transfer orbit of a vehicle from earth to 
moon a simuLtaneous reguLarization at both attracting centers is needed. This was 
performed by Birkhoff [2]. In order to faciLitate the generaLization to 3-dimen- 
slonal motion, we give a somewhat modified account of his Lines of approach to the 
probLem. The orbit of the moon about the earth is assumed to be a perfect circLe. 



A rotating coordinate system y,,y, Is introduced (Fig. 1.2) In such a way that 
earth and moon occupy fixed places on the Y,-axis, the origin being their center 
of gravity. The probl.em of computing the orbit of a particle of negligible mass in 
this force field is kno+'.as the restricted circular problem. We are stiLL 
restricted of course to planar orbits in the y-pkne. By convenient choice of the 
units of mass, time and distance we may assume that 

1. The total mass of earth and moon - 1. 
2. The distance of the moon from the earth = 1. 
3. The gravitational constant = 1. 

Denoting the mass of the moon by fc we find this body at (f-p, o ) and the earth 
of mass (f-p) at (-,u,O). The angular vetocity of the rotating system Is * f 
as follows from the third Law of Kepler. Finally we denote by r,, r, the distances 
of the moving particte from the earth and the moon respectively. 

‘Y2 

l orth 

2 \i -nc 
m. 1.2. Birkboff's Transformation. 

In the probLem at hand the conservative potential u is composed of the two 
gravitatIonaL potentials and the potential of the centrifugal force: 



or up to a non-essential additive constant 

the perturbing force is the Coriolis force 

Pf - CL /cJJ = - zj, . 

(1,291 

The key for achieving the desired regutarizatlon is the remark that Levi-Clvita's 
transformation (section 1.1.1) has not a regularizing p -- roperties at the origin -- 
but aLso at Infinity. It is therefore sufficient to throw the earth Into the origin --- 
and the moon into infinity by appropriate and elementary conformal transformations. 
The foLLowing chain of mappings Is proposed. (The V-plane (Listed first in the 
tabl.e) is the parametric pLane corresponding to the regularized equations of mo- 
tion, the y-pLane (Listed at the foot of the tabLe) Is the physical, pLane of 
x. 1.2). 

space coordi- abscissa abscissa Transformation 
nates of earth of moon 

Inversion 

Levi-Civita (KS) 

Inversion 

By inversion is understood a transformation by reciprocal, radii. The center of 
inversion is at the point ( 3 0) and the radius of inversion is a . (This state- 
ment is vatid for the transformation 2-3 as wetL as for 4 - 5 ; a. 1.2 - 
il.Lustrates the mapping 2-3 ). The transformations / -2 and 5 d 6 are 
onLy unimportant adjustments; the essential transformations 2-5 are conven- 
ientty expressed in comptex notation by 

u-f ,2, L 
X- K 

P-r 
> Y-l =GJ, 

where v IS the compl.ex conjugate of 'I/ ( 1/= V,+c' K). These give for trans- 
formations 2 -5, 
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and so, the complete transformation I- 6 is 

Y- ,‘(v+&) + e-r). 
In reab notation this may be written 

The distances r,, P, have the foILowing expressions: 

(1,331 

(1,341 

(1,361 

The absolute value in the numerator of (1,35) is the distance of the image of the 
particle in the parametric pl.ane from the image of the earth. For establishing the 
equations of motion the scheme (1,17) - (1,24) Is applied. 

fJ = ,‘r ri L . 
"I + "a 

(1,371 

For the computation of the CorioLis forces ?I in the parametric space the abbre- 
viations 

J 
r'b 

- 2$f (1,381 
4 

are introduced. With A= 1 we have from (1,19)(1,21)(1,30) 

Because the Corlolis forces do no work, the equations (1,23) of motion are fInaLLy 

Here the expression 
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has no Longer singuLarities at the attracting centers; thus equations (1,40) are 
perfectty regutar. From (1,20)(1,11) we obtain the energy retation 

(obseme w= 0) and after integration of the differential equations (1,40) the 
physical time t Is given by (1.18) 

t- fLs. (1943) 
0 

By Birkhoff's transformation a new slnguLarlty is produced at the origin of the 
parametric v-pLane. This can be seen from (1,41). This event does not generate a 
serious danger because this origin corresponds to the point at infinity of the 
physicaL pLane. T.N.ThleLe removed aLso this singuLarlty by substituting for v in 
(1,32) an exponentiaL not attaining the value 0. His transformation is 

v - Eli*, y - co5 x , Y - &-(4-t ~cos.2. 
It is worthy of note that the right-hand sides of (1,40) can be simplified with 
the heLp of the Cauchy-Riemann equations for the analytical kction Y(v). These 
expressions are reduced for I'- 1;2 to (2D v,' ) and (-2 D V,‘) respectively. But 
we do not take advantage of this fact because it is no Longer true for the 
3-dimensionaL motion of a particle. 

1.2 Motion in 3-dimensionaL space 

In this section we consider the motion of a particbe moving in the 3-dimen- 
sionaL physical space referred to rectangular coordinates X,, X,,X,. It turns out 
that a generaLization of the methods of section 1.1 to 3-dimensional motion is im- 
possibLe if onLy three generaLized coordinates U,, Ut, U, are introduced. But aL- 
most aLL such methods have their adequate generalization If we are allowed to fix 
the position of our particle by 4 parameters U,, UA> u,, % reLated by a non- 
hoLonomlc condition. Thus the parametric space WILL be a 4-dimensional space. 

1.2.1 The KS-Transformation. This is the generaLlzatlon of Levi-Civita's trans- 
formation described in section 1.1.1. The 4 parameters ui are Introduced by the 
foLLowing definitions: 

pzzJ (1,44) 

For uj= U+= 0 this coincides indeed with (1,25). As in (1,26) the distance r 

of the particLe from the origin of the physicaL space is given by 

10 



t--L&$, (1,451 

where summation goes from I to 4. This foLLows from (1,44) by expLicit verifica- 
tion. ALSO we have 

r-f x, - 2($+ u(f) , r-x,== 2(u,L+ KJ’). (1,46) 

This furnishes the roLLowing two aLternatives for the computation of the Ui from 
the Xi : 

The second and third Line are obtained by solving the second and third equation 
(1,44) with respect to uz, u, or with respect to K,,u+. The ff,. are of course 
onLy determined after choice of one among them, but this is irreLevant for our 
purposes. 

The transformation (1,44) has been studied in the artlcLe [3] and many con- 
formaL properties have been recorded. It foLLows from these considerations that the 
basic formuLae (1.17) - (1,24) are appLicabLe with the onLy modification that 
summation runs from f to 3 in the physicaL space and from 1 to 4 in the para- 
metric space. With A- i we obtain immediateby 

(1,181 dt - rds, (1,47a) 

(I.191 K/- $( u, x, f u, XL + uj xj ) , 

L4: - f(-KtX,+ u,x,+ u&,) , 

I 
4 - &u3 i,- uu i* + 4, id) ) (1~48) 

I 
ff4 - f( 4JG-- lx, iz f u, 2, ) . 

(1,201 Vf = $ z u,f, (1,491 

(ls21) 41 - 2( u,p,+ a/% + %PJ > 

% - 2(-4p, + U,PL f U+P,) ) 

93 - a-yp, - Q4Pa + %A) J (1,50) 

y* = -q U&P, - %P= + UzP3). 

Let us assume now that our particLe is subjected to the gravitationaL attraction 
of a body Located at the origin and to some unspecified perturbing forces. Thus the 
potenti.aL is 

11 



where ff is the product of the gravitationaL constant with the mass of the centrat 
body. Our automatic formuLa generator goes on as foLLows: 

(ls22) 

(1~23) 4+-zh u,. - r-pi +2 Wu,. , 

(1,24) h = $ + u, - $ - -$ , w - /k p,. d-u,. . 

The set (1,48) of equations impties 

(1352) 

(1.53) 

(1954) 

(1>55) 

This is the non-hoLonomic condition mentioned at the beginning of this section. 
Equation (1,49) transforms the vis viva integral. (1,ll) into 

This set of formuLae is, in ItseLf. a coLLection of guiding ruLes for the numericab 
computation of an orbit. Let us caLL it 

First procedure 
(Perturbed motion of a particLe about a central body ; computation of the parameters 

u/ as functions of the fictitious time S .) 

InitiaL conditions. Compute initial position and velocity of the particle from 
(<,47) and (1,48), aLso h from (1,54). M= 0. 

DifferentiaL equations. Integrate the system of 10 simultaneous equations of 
first order 

t’= I-, W’-&u;. 
(1,571 

At each step r, X; , pi are computed from (1,45)(1,44)(1,50), the perturbing 
forces pi in the physicaL space being known from other sources. ‘) (1.55) and. (1,56) 
are used as checks. 

As far as the author knows, this simpLe procedure has never been used for ex- 
pL1ci.t numerical computations. It WILL be modified and refined in sections 1.3 and 
1.4 for eLLiptic initial conditions but it is possibty successful. for hyperboLic, 
parabolic or near-paraboLic InitiaL conditions. In such a case we advocate to 

compute the perturbations 2) 

Aa,. - K,.- +A, dr - r-r- , At - t--t& (1358) 

') If no coLLision occurs, the perturbing forces must not remain finite at the ori- 
gin as was assumed in section 1.1. 

2) Throughout the paper the subscript H indicates vaLues corresponding to the un- 
perturbed Kepler motion. 
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of the coordinates of distance and of time. From (1,45) it foLLows 

fir - z(2uix + Aui)Auj , 

thus '(1.57) can be transformed into 

(1.59) 

(1,601 

where AP is given by (1.59). This arrangement of the ruLes for computation avoids 
the Loss of significant figures by subtraction of aLmost equal, numerical, vaLues. 
The computation of the unperturbed KepLer orbit is described by equations (1,76) 

(1,87)(1,88) in section 1.3. 

The equations (1,52) of motion have not been taken into account in our first 
procedure. They have the advantage that they avoid the computation of the work W 
but they suffer from the fact that both quantities 2M/r and .Y+ are infinite at 
coLLlsion. NevertheLess these equations are very usefuL for the discussion of the 
oscuLating KepLer orbit in section 1.4. 

1.2.2 The B,-Transformation. The generaLization of Birkhoff's transformation 
(section 1.1.2) to 3-dimensionaL motion is immediate. The y-coordinate system is 
supptemented by a Y, -axis perpendicuLar to the pLane of a. 1.2 and the particLe 
is atlowed to move in space, r,, ci denoting as before its distances to the 
attracting centers (earth and moon). The potential. (1,29) Is modified by a term 
containing yj and becomes 

Again 4 generabized coordinates Y are introduced for describing the motion of 
the particLe and the chain (1,31) of transformations is appbied with the onLy 
modification that the mapping of space 3 onto space 4 is performed by the KS-trans- 
formation just discussed. Hence the spaces I through 3 have four dimensions and the 
remaining spaces 4 through 6 onLy three. The inversion 2-3 for instance Is 
given by the formuLae 

The composition of the 5 transformations of tabLe (1,31) is a LittLe tedious 
because compLex notation Is no Longer avaiLabLe. The fInaL resuLt Is 
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For y3 - V, - 0 this reduces to the previous transformation (1,34). Because in- 
versions are conforma mappings in 4-dImensiona as well as in 3-dimensionat 
spaces, the prescriptions (1,17) - (1,24) for establishing the equations of motion 
stiLL hold true; one obtains 

(1,17) 

where 

By choosing A- f , we have for the ‘fictitious time J 

UT - D cd5 . 

(1,65) 

(1,66) 

The transportation of the Coriolis forces into the parametric space U. Leads to 
exactby the same resul.ts as before, namely 

where 4 is now running from 1 to 4 and the equations of motion (1,23) are 
LiteralLy the same as In (1,40), that is 

and 

The initial posltion of the particle in the parametric space can be computed by 
making use of tabLe (1,31) in the reverse order, using the formulae (1,47) for the 
inverse KS-transformation. Initial veLocities are taken from (1,lg) 

After integration of the equations (1,68) the physical time is computed from 

The foregolng brief description of the B3 -transformation Is adequate for our 
purposes. A thorough analysis with detaiLed proofs is given In [4]. Further infor- 
mation is contalned In chapter 3 of this report (Waldvogel); there the B3-transfor- 
mation is established for the more generab elliptic restricted probLem, where the 

moon is al.iowed to move on an ell,iptic Kepler orbit. 
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1.3 Kepler motion 

1.3.'l The unperturbed motion of a partlcLe about a centraL body is governed by the 
equations (1,53)(1,54) 

where T-,, V-, are respectively the InltiaL distance and the velocity In the physi- 
cal space. If the coefficient of U,. in (l,72) is positive, we may introduce a 
frequency w by 

M vz &Jz I - - L 
zr, 4 

(1,73) 

and write our equations 

u,? + u=u,, - 0 . (1974) 

Thus the motion of the Image of the particle in the parametric space is a harmonic 
oscillation and its orbit is an elLipse centered at the origin. This orbit is 
mapped by the KS-transformation (1,44) onto a KepLer eLLipse in the physicaL space 
and if the Image makes one revolution in the U-space, the particLe ItseLf makes 
two in the physical space. Its veLocity V is determined by (1.49) 

rr given by (1,45), is the distance of the particle from the origin of the pbysi- 
caL space during Its flight. By integration of the equations of motion we obtain 

K,. - d,.cosWS +fiJhLWs) + w(-~s.+cJStpjcas us). (1.76) 

.J is the fictitious time satisfying dt - rd.5 and "c,., p,. are constants which 
are computed from the initiaL conditions as follows 

Obviously the 8 parameters U.,pj characterize the motion of the particle; we 
call them the reguLarized eLements of the orbit. From (1.55) it folLows at Instant 
5-O 

&4 p+ - “apa + a&!J -a,*-0. P 

Furthermore (1,56) can be written for J - 0 

0,78) 

where (1,54) and (1,73) are used. Thus it folLows from (1,75) and (1,77) 

(1,791 
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The 9 parameters Q,.tij,fj are thus related by the two identities (1.78)(1,79). 

This remark reduces the number of independent parameters to 7 exceeding by one the 
cLassicaL number. This stems from the fact that the mapping of an orbit from physl- 
caL into parametric space is not unique. 

We shaLL next compute distance r and time t in the physical space. 

These formulae together with (1,76) and (1,44) determine a given KepLer motion 
explicitLy. 

We now proceed to estabLish some connections with the cLassicaL theory and its 
notations. The time 7 of revolution in the physicaL'space is attained for 
WJ- X, thus 

ham,79) (lm 

If a denotes the semi-major axis of the KepLer eLLipse in the physicaL space, we 
have from Kepler's third law 

and confrontation with (1,82) furnishes 

a kf 
- 4;r - 

By inserting this into (1,79) we obtain the important result 

mm 

The mean angular velocity ,U of the particLe is 

w2) 

my inserting the value (1,73) of 0 into (1.83), we obtain a well-known 
relation of cLassicaL celestiaL mechanics, 

(05) 

which holds true at any point of the Kepber orbit. 

These formulae are a little simplified if the InitiaL position of the particle 
is the pericenter of the Kepler orbit. Denoting by e,E eccentricity and eccentric - 
anomaly comparison of (1,80) with the classical formula 
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Leads to the resuLt 

It stiLL remains to consider the cases where the coefficient of Uj In (l,72) 
is negative or vanishing. If the former event occurs, we have equations of the type 

uy- &i,.- 0, 
ws -fas 

9 - tic. e +pJe 1 

and the orbit is hyperbolic. A vanishing coefficient Leads to 
e ff,. = 0 , Lli - "c,'J -f-p . 

This orbit is a straight Line in the parametric space and a parabola in the physi- 

cal space. 

1.3.2 Variation of the eLements under the influence of perturbing forces. Return- 
ing to the general elliptic case we may write equations (1,5X)(1,54) 

u,f + Ju,. - 5 , 
L M = cd---v,* 

2r, 4 5 - &(rc$,. + 2 I&,.) . 

haa) 

(09) 

This system is integrated by the familiar method of variation of constants. We put 

thus introducing varying elements O$,.ci(S), p,.(S) . They must satisfy the differen- 
tial equations 

In order to rewrite the energy equation (1,56), we use (1,54) and (1,45) nameLy 

&+~ - -9J, 

r - L(Tci W5 + fisin us)‘, 
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We now coLlect the formuLae of this section and section 1.2.1. This collection is 
our 

Second procedure 
(Perturbed motion of a particLe about a central, body; eLlIpticaL initiat cohdi- 
tions. Variation of eLements.) 

Data. M - product of gravitational constant and mass of the central body Located 
at the origin of a Cartesian system X1., X2, X3 . 

Pi - components of the perturbing force (per unit of mass of the particle). 
At instant ,!! - 0 the position XL and velocities .$ of the particle are 

given. 
InitiaL conditions. At instant t- 0 compute the initial values of the general- 
ized coordinates U,, U2,U3, ff4 of the particLe by either of the two sets 

Take the Left- (right-) hand set if XI& o (X,40) and choose U4 (U,) arbitrar- 
iLy. At instant t- 0 compute also 

(C, ti,- initial dis- 
tance and velocity) 

The initial values &;),, (j&d0 of the elements 4;, pi are now given by 

Furthermore at instant t- 0 we have the initial vaLues 

G-o, %- 0. 

Differential equations. e': - - 
/ $5 Sin ws , ,‘F w ,’ cos us , 

(argument S) (1,941 
f=r, W'= &jLg, J’- f,z,3, 4. 

At each step of integration compute 

x, - u: - u: - KJL f fff , 

uj = "cj ca w J f pJ. sin ws , A, = 244 - u.3 u*) , 
(1,951 

ha = 2 (L1, u3 f uz 4) , 

r = u,=+ up,;+ U,‘) 
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(1195) 

Checks. 
“4ft - % pa + cq.. - =,p+ - 0 ' 

PW- 2faZ~6c,~+p,~j - M . 

1.3.3 Perturbations of the elements. If the perturbing force is smalt compared 
with the central attraction, it is advisable to establish a companion procedure 
computing the perturbations 

A “Li =i d; -a,.& , Af~;-/3,.-&, Ar- t--r, , At- t-t, (1,961 

of the elements, of distance and of time. As always the subscript fi indicates 
values corresponding to the unperturbed Kepler motion. 

"</'h - t"j/. - (Qo , /$,.& - @,jo = & c(I,I'/. . 

r,, t, are given by (1,80)(1,&l) if the InltiaL vaLues &;J,, (piJo of the eLe- 
ments are inserted. From (1,92) it foLlows 

where z. for instance is an abbreviation for the arithmetic mean of the perturbed 
and unperturbed eLements of the d-type. 

Companion procedure 

Substitute for the differential equations (1,94) the following routine. 
DifferentiaL equations. 

(Aoy) = - & 5 sin ~5 , (A/3;)‘= &- 5 ~0s CLIJ , 

(At)’ = At- , w’= ~pif$‘. 

(Initial conditions /d=jjO= 0, (A/3.); - 0 2 (dfj. = 0, M-0). 
At each step of integration compute 
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In order to avoid Loss of significant figures, the energy-check shouLd be 
modified as foLLows. Because there is no work done by perturbing forces during the 
pure KepLer motion, we have rW- Ak W/ , hence 

t-h/- 4 d&z,. Aa,. + f; A-i, . (1,971 

This companion procedure is the basic tool, for the numerical, experiments out- 
Lined in chapter 2 of this report (Rijssler). A final remark shouLd be added con- 
cerning dissipative perturbing forces such as drag for exampLe. In these cases, the 
veLocitles of the particLe in physical, space are aLso needed. These are given by 
(1,lg) namely 

1.3.4 Ejectlon orbits. It must be stressed that the frequency Lc, depends on the 
initial, conditions; w should be known with high accuracy as wilL be shown in 
section 1.7. If the particLe is starting at instant e-0 at the origin (thus 
coinciding with the centraL body) this frequency appears In undetermlnate form 

because r, vanishes and U, is infinite. In this case we give onLy the direction 
of the initial velocity vector ii but we give also the numericaL vaLue of either 
cr, , the constant h of energy or the semi-major axis a, of the unperturbed 
orbit, these quantities being connected by 

(1,54)(1,83)(1,89) &J’--+LY. 
4a, 

(1,991 

The unperturbed orbit in physicaL space is a segment of straight Line and from the 
given data the coordinates Xi* of the apocenter are at once obtained as weLL as 
the corresponding parameters U,? by (1,47). In the parametric space the apocenter 
Is associated with the vaLue s-z5 , thus we have from (1,76) 

the ($JO vanish. 

If the particLe starts not exactLy at the origin but near the orlRin, W is -- 
onLy poorLy determined, thus w should aLso be given in advance and again the 
InltlaL veLoclty-vector only by Its direction. The VeLoclty K,< at the initial 
Instant is then determined by (1,48) up to a proportionaLity factor. This factor 
may be computed from the Law of energy (1,56) 

(1,100) 

20 



NevertheLess inltlaL position and velocity must be given with high accuracy If 
(1,48) Is appLled. 

1.4 .The oscuLatlng KepLer motion 

We return now to the equation (l,52) of a perturbed KepLer motion 

(1,101) 

The oscuLatlng KepLer motion at an arbitrary Instant Z! Is by definition the pure 
KepLer motion constructed with the actuaL values of the coordinates U/ and veLoc- 
ities u/ at time t 1) as InitiaL conditions . The semi-major axis of the oscu- 
Latlng orbit is a function 0. of 6 or J and Is obtained from (1,86) 

2 L 
----L f 
a r M ’ 

Thus (1,101) can be transformed into 

(1,102) 

The variation of Q , as time goes on, is intlmateLy connected with the work h/ 
done by the perturbing forces. We obtain explicitly this dependence of Q on W 
from the vis viva integrat (1,ll). This gives 

A disadvantage of (1,103) is the variability of the coefficient of 6~. This can 
be avoided by introducing a new fictitious time o- defined by the differential - 
reLation 

& Is the semi-axis of the osculating orbit at the InltlaL instant I?- J - b- 0. 
and may be obtained from (1,102) 

(1.106) 

where 0 is the frequency used throughout section 1.3. The substitution (1,105) 

transforms the equations of motion into 

u,:’ - M ur L~r+-~,.- -- 
Pa ’ 4u, c& + ?,. ’ 

where accents denote differentiation with respect to U'. dmay be eLlmlnated by 

1) This is to say if the perturbing force is switched off at Instant &f, the 

particLe moves onward on the osculating orbit. 
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differentiation of (1,104) 

(1312) 
thus 

The right-hand sides of these equations can be considered as perturbations, because 
they are proportional to the perturbing forces. It still remains to express Q by 
quantities attached to the parametric space. With W as independent variable 
equation (1,49) is transformed into 

8' - -g 2 r &,?# 
thus 

and by soLving with respect to Q 

As in section 1.3 the equations (1,107) are integrated by variation of constants. 
We agree however to denote the new fictitious time again by S and we put there- --- 
fore 

u,. - DC,. cas ws "fi SliL Lds , u/a w(-ccj S& ws fpj ca OS) . (1,109) 

The Oc,., fi are functions of 6 and are the eLements of the osculating Kepler -- 
motion. Its semi-axis is 

(1,108)(1,45) a - $fz(ycos as +/3j 9hWs,lZ 

as could be expected from (1,84). 

Third procedure 
(Osculating orbit.) 

Data and initial conditions as in second procedure. -- 

M Compute also Q,- - . 
4tiz 

JA Differential equations. 

L (argument 3 ) 
&-tfp&Lds, / p-&+-S, 

&y/iiz t/- p. 
r 

/-/5-/P 
u,.> u,.: +, r, 9,. as in second procedure. Compute at each step also 
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As In (I,%) we establish a companion routine by computing onLy perturbations 
with respect to the pure KepLer motion. Let At - Z!- t6 be the perturbation of 
time, where ,$& is the time passed during the motion of the particle on the unper- 
turbed KepLer orbit up to the position corresponding to a given vatue of 5. 
According to our third procedure we have 

and in particular on the unperturbed KepLer orbit (a- U,- const.) 

thus 

(1,111) 

rh and te being determined by the formuLae (1.80)(1.81) of the pure KepLer mo- 
tion. 

Companion procedure 

Data and InitiaL conditions as in second procedure, -- 

a, - M 4w+ ’ @%,A - 0 , ‘A)$)/=0 . (At/.- 0 . 

DifferentiaL equations. 
(argument 6 ) /A-)' --&/y,,s, (A/+ g$ 5 ~0s ws , 

(At)' - 

At each step of integration compute 

LI/., u,f* xi, r, p,’ as in second procedure. Compute at each step also 

Check. 

We should not forget to adapt the ruLes (I,*) for the velocities to the 
modified definition of fictitious time: 

(1,105) (1,112) 

23 



The obvious advantage of the third procedure is that it avoids the computation of 
the work w done by the perturbing forces; moreover, operating with the famiU.ar 
osculating orbit facilitates the comparison of classicaL and regularized computa- 
tions. But it should be mentioned however that the companion routine suffers a 
little from loss of significant figures because on the right-hand side of (1,111) 

the difference of two almost equal quantities appears. Our numerical. experiments 
however convinced us that this is not a serious danger. 

1.5 Analytical theory of perturbations 1) 

1.5.1 First-order perturbations. The methods and procedures outlined above are 
valid for any particle subjected to elliptical initial conditions and moving under 
the influence of a central attraction and perturbing forces. There is no necessity 
to assume that the perturbing force Is small compared with the central attraction. 

On the contrary, this section is devoted to the study of perturbing forces 
which are infinitesimally small; this Is to say a theory of first-order perturba- 
tions is developed. As the left-hand sides of the differential equations (1,107) 

are already linear, no linearization Is needed; this Is in contrast to the classi- - 
cat theories of first-order coordinate perturbations [63 which are based on the 
non-linear differential equations of the Kepler motion. As in classical theories 
the restriction to first order Is performed by evaluating the right-hand sides of 
(1,107) no longer on the actual orbit, but on the unperturbed Kepler orbit which 
osculates at time t-0 ; thus 

(1,113) 

As always, the subscript K indicates values to be taken on the unperturbed orbit. 
The ratio Q/Q0 disappears because Qfl - Q,. The right-hand sides of these equa- 
tions 

(1,114) 

are known functions of the regularizing time J ; therefore the differential equa- 
tions for the elements (as recorded In the third procedure) can be integrated by 
quadratures: 

For first-order perturbations (1,111) is approximated by 

(1.116) 

') More details on first- and higher-order perturbations are contained in [5]. 
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thus avoiding loss of significant figures. This Implies the computation of 

Finally rR is taken from (1,80) or from (1,45). 

Fourth procedure 
(First-order perturbations of elements and of time; osculating Kepler orbit.) 

Initial conditions. As in second procedure. 
Computation of the unperturbed motion (osculating at instant t- 0 ). For sake of -- 
simplicity of notation the subscript K is suppressed. 

Perturbations of elements. - 

s 
AN,. - - $ 

/ 5 sin,us ds , 
0 0 

Perturbation of semi-major axis 

A a - L [k,A A w,. + @A A/$] . 

Perturbation of distance 

Ar- A a + cos ZWS z[(k,js A”c; - (& A/$] + sin Zw~L~~~,~~dp_i t (@de AW,j . 

Perturbation of time 

At =/fA rt2&Aa)&. 
. 

Elements of the osculating orbit at instant J . -- 

M,. - (w-h +Aocj , p,. - @de + Ap,. , t = tfi + At . 

Position U,., Xi of the particle from (1,95). 
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An account on numerical experiments is given in chapter 2 (Rijssler). In the 
sequel the integrals (1,115)(1,116) are computed by Fourier expansion, therefore 
some remarks about the periodicity of our functions are in order. A function f(S) 
is called symmetric or skew-symmetric if 

respectively. As can be seen from (1,120) the parametric coordinates uj are skew- 
symmetric but the physical coordinates Xi are symmetric. Let us assume temporar- 
ily that the pi in (1,120) are any functions depending only on the position xi 
of the particle in the physical space; thus they are symmetric functions. The 
corresponding functions pi are skew-symmetric as well as the perturbing functions 

(1,122) (Awj)' = -&y<..SinWS, (Afi)‘- &- 5 aa% WS 

are symmetric and have therefore by definition the period 5. 

1.5.2 Three-body problem. We consider now the motion of.a particle of negliglb 
mass in the force-field of two heavy bodies moving about each other on perfect 
Kepler orbits. As always the first body - referred to as central body - is at 

le 

the 

5. but it should be stressed that the integrands 

origin of the Xi-system and its gravitational parameter (product of mass and grav- 
itational constant) is denoted by M. The second body of gravitational parameter 
G moves on the relative Kepler orbit, assumed to be an ellipse. Let 5 be its 

semi-marlor axis and 

the mean angular velocity of this second body, also called perturbing body. fi 

should be small with respect to M. In our first-order theory the path of the 
particle is also a pure Kepler ellipse, as far as the computation of the perturbing 
forces is concerned. In order to compute these forces, the position of the particle 
will be fixed by its fictitious time S and the position of the perturbing body by 
the physical time f . Furthermore S,t are considered to be independent varia- 
bles, since the forces pi exerted by the perturbing body on the particle are 
defined indeed for two arbitrarily chosen positions of these two bodies. 

For a fixed position of the particle the ,oi are periodic functions of the 
mean anomaly (pt ) with the period 2e; therefore we may expand them into a 
Fourier-series: 

(In order do avoid accumulated exponents, we use the notation c&a - COSD( -+ C’O* a. ) . 

The Fourier coefficients & are determined uniquely by the position of the 
particle; they are symmetric functions P‘.,,(S) of S in the sense of the pre- 
ceding definition. By Inserting (1,124) into (1,120) the Fourier coefficients of 
the integrands (1,122) are obtained and from our discussion above it follows that 
these coefficients are again symmetric functions of S . 
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In order to si.mpLify notation Let f stand for any of the 8 lntegrands 
(1,122). The Fourier expansion of the integrands has now the typIcaL form 

(1,125) 

where fi 6) Is of period $ with respect to its argument 5. 

But during the actuat motion of the partlcLe and the perturbing body the varl- 
abLes s,t are not Independent but corretated by the fact that I? is atso the 
KepLer-time z‘~ of the particLe corresponding to the vaLue of S under considera- 
tion. Eiy writing (1,121) in the concentrated form 

equation (1,125) is transformed into 

The expression in brackets Is a symmetric function of S of period 
therefore be expanded in a Fourier-series of the type 

[I = FfRV CL5 zuws , 
“m-O.2 

hence 

$ and may 

(1,127) 

where the coefficients fnv are constants. Any integrand (1,122) has such an ex- 
pansion and by integration it foLLows finaLLy 

the accent indicating the omission of (?Z,Y)- cO,O). The constant must be deter- 
mined in such a way that the whole expression vanishes for s-u. This finishes 

the computation of the perturbations Ax,. of the elements and by further integra- 
tion the perturbation At of time is obtained, as was described In our fourth 
procedure. 

We proceed to discuss brIefLy the event of vanishing denominators In (1,128). 
We have then 

Y Q. - 
x--- E 

zwp - -p ' 

where ,U Is the mean anguLar vetocity of the partlcLe, determined by (1,85) and 
(1,84). A vanishing denominator thus occurs If and onLy if the mean motion of the 
partlcLe and the perturbing body have a ratio that is a rationaL number. Such a 
situation is known in cLassicaL ceLestiaL mechanics as resonance. 
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In practice however, the Fourier expansions shoutd not be carried out as de- 
scribed above. The foLLowing method is better adapted to automatic computation. An 
auxiLlary variabLe S, is Introduced defined by 

51 - p' a. s , 
hence 

(1,127) f - (&)fRP CA (zuws + ns,), (1,129) 
, 

(1,126) t ’ m- 
F 

S, + A, f 1, Gas 2wS + A, Sin Zryr _ (1:130) 

EvidentLy, the integrands f can be considered as functions of the two independent 
variabLes S, S, , because any choice of S determines the position of the particle 
and then an arbitrary vaLue of S, yleLds a corresponding vaLue (1,130) of time 
and consequentLy a position of the perturbing body. The deveLopment (1,129) is then 
obtained by tabuLating the 8 integrands f at equaLLy spaced vatues of S, S, and 
by puting Into action a standard automatic routine for doubLe harmonic anaLy%is. 

By introducing S, abso in the final, resuLt (1,128). the resuLt 

is obtained. The term fo,& is the secuLar perturbation and the sum is a doubLe 
Fourier-series with respect to s, 5, . 

In chapter 2 of this report, Dr. RijssLer has worked out an ALGOL-program for 
computing first-order perturbations, based on the preceding anaLysis. In order to 
obtain consistent algorithms, he introduces also reguLarized eLements zj,pJ for 
the motion of the perturbing body. Furthermore he uses instead of s, J, two modi- 
fied independent variabtes intimateLy reLated to the eccentric anomaLies of the 
particLe and the perturbing body. 

P.A. Hansen [7] was the first to appreciate the advantages of a Fourier ex- 
pansion with respect to the eccentric anomaLy of the particLe instead of using its 
mean anomaLy as independent variabLe as was customary in the works of his prede- 
cessors. The introduction of s, is due to him. Therefore there are some points of 
contact between Hansen's methods and ours. Hansen's procedures are very accurate 
and have been widely appLied; they can however not handLe the probLem at hand. Our 
main goaL has been Indeed to estabLish a perturbation theory remaining vaLid for 
near-coLLislons with the centraL body, that is to say for eLLiptic orbits with 
eccentricity 0nLy slightly inferior to 7 or even - 1. The numericaL experiments 
described in chapter 2 indicate that this goaL has been successfuLLy attained. 

1.6 SecuLar perturbations 

The investigations of section 1.5 have cLearLy indicated that the theory of 
the oscuLating orbit and Its perturbations, based on reguLarized etements, proceeds 
aLong the same Lines as in the ctassicat theories of Lagrange, Leverrier and their 
successors. 
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In this section we discuss some aspects of LIteraL deveLopments of perturbing 
fGnctions and of secutar perturbations. We do not attempt to present a compLete 
theory but restrict ourseLves to some examples of retative simpLiclty. The sub- 
script K, denoting quantities attached to an unperturbed KepLer motioti, is sup- 
pressed in this section and by ~,..p~. we understand the constant eLements of such 
a motion. With this convention the equations (1,114) and (1,122) of our first-order 
theory can be written 

(1,131) 

We remember the significance of our notations: 

UT, ua, us, Q+- coordinates of the particLe in the parametric space, 

pi - perturbing forces in the parametric space, 
accent indicates differentiation with respect to S , 

A%,,> +?+P erturbations of the elements and 
0 is defined by (1,73) 

M 
.? 

cJLWPd 3 
2 ra 4 ’ 

where M is the gravitationaL parameter of the central, mass and 

c, we initial position and veLocity of the particLe. 

1.6.1 Conservative perturbing potentiaL. Let us assume now that the perturbing 
forces pi in the physicaL space may be calculated from a conservative potentlaL 

z/(x;, which depends onLy on the position of the particLe. Taking into account our 

KS-transformation (1,44) the perturbing potential becomes a function Vtu/;l in the 

parametric space; if we repLace U,., using expression (1,132), this function is 
further transformed Into a function V&.,/B~; S/ of S, where the ti,.,fi shouLd 
be treated as parameters independent of S. As was estabLished after formula (1,8) 

we have 

thus 

(1,135) 

the Last expression appears In (1,131). From (1,132) we aLso obtain the parHaL 
derivatives of V with respect to the eLements Wj and /+j : 
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By CoLLecting (1,131) through (1,136) we have for instance 

simiLarLy 

This set of ruLes for computing the perturbations of the 0~' /Jpi is anaLogous to 
the canonlcaL equations for the perturbations of the cLassicaL elements. We adapt 
these ruLes to the more famiLlar classicaL notation by alLowing the particle to 
start from its pericenter and Introducing the eccentric anomaLy E--US. Hence 

foLLows from (1,83). Q is the semi-major axis and e the eccentricity; it foL- 
Lows that 

In order to compute the IntegraLs of the right-hand sides, V is expanded into a 
Fourier-series with respect to E; this impLies a Literab deveLopment, this is to 
say that the coefficients of the expansion must be given as expLlcit algebraic ex- 
pressions in the eLements a~,/$$ and 6 or E; otherwise their partial deriva- 
tives are not avaiLabLe. An anaLogous analysis can be carried out In the case in 
which the perturbing potentiaL is not conservative but depends expLicitLy on time. 

1.6.2 SecuLar perturbations. Let us now Investigate the secuLar perturbations of 
first-order Xn the problem of the three bodies. As in section 1.5.2, a bar over a 
symbol denotes a quantity attached to the perturbing body. If no resonance occurs, 
the secuLar InfLuence of the moving and perturbing body Is equivaLent to the infLu- 
ence of the Gaussian ring obtained by distributing the mass of the perturbing body 
over its eLLipticaL orbit proportionaLLy to the KepLer time on this orbit. The 
potentiaL of this ring at a given point in the physicaL space‘is the integraL 
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(1,138) 

where p is the distance from the given point to the generaL point of the ring; 
fi the gravitational. parameter of the perturbing body and 7 its time of revoLu- 
Mon. (Fig. 1.3). The perturbing potentlaL I/ is conservative and thus our ruLes 
(1,137) are appLicabLe. If 

Y- v. f- v,cosL=+ qrs/kEc ..- (1,139) 

is the Fourier expansion of this potentiaL, we need only the first three coeffi- 
cients l/, G, K, b ecause we are onLy concerned with secuLar perturbations and 
are therefore only interested In the constant terms in the Fourier-series of the 
right-hand sides of formuLae (1,137). 

x. 1.3. Gaussian ring. 

The further investigations of this section are restricted to a circuLar motion 
of the perturbing body. (Fig. 1.3). The circLe of radius 0 is assumed to be In 
the X2,)(,-pLane and the position of the particLe Is described.by poLar coordinates 

r, 4 p l 
In this special case the potential V of the circuLar ring Is given by 

the Legendre expansion 

(1.140) 

where f& is the Legendre poLynomiaL of degree (2n). Because both sides are 
harmonic functions, it is sufficient to verify this formula for fi- 0 (parMoLe 
on the xf-axis). It Is then reduced to 

The Last expression is undoubtedty the vaLue of the ring-potehtiaL at a point on 
the X,-axis. The series (1,140) Is convergent In the interior of a sphere having 

31 



the circular ring as Its equator. In order to transfer V into the parametric 
space, we use the explicit formuLa 

(1.141) 

From the KS-transformation the folLowlng expressions are obtained 

(ls44) 

(1947) 

hence 

'+‘{ (1,142) 

-G 
The zonal, harmonics P en are thus homogeneous poLgnomiaLs 1) of degree (4n ) in 
the parameters &,. . The formuLae (1,140) and (1,142) establish the perturbing 
potential, in the parametric space. According to the computational program outlined 
in the first Lines of section 1.6.1 it still remains to Introduce the el.ements 

ogi> pi - This is achieved by formula (1,76) adapted to the eccentric anomal.y 

E -2w.5. 

(1,143) 

The equations (1,'l37)(1,140)(1,142)(1,143) furnish aLl the necessary tccLs for ccm- 
puting the secular perturbations due to a perturbing body moving on a circul.ar 
orbit. 

1.6.3 An exampbe. In order to give an example of explicitly computed secular per- 
turbations, we truncate the series (1,140) after ?z I 1. This Is only reasonabLe 
if the particLe does not closeLy approach the perturbing body. With this approxi- 
mation we obtain from (1,142) 

and by (1,143) this becomes a Fourier poLynomia1 In E. 

Working with this perturbing potentiaL Dr. FlCssLer has computed the secuLar 
perturbations; by introducing new quantities, connected with the classical orbitaL 
eLements, he obtains a rather simple result. 

and 
tric 

Let (Fig. 1.4) A,C be pericenter and apocenter of the orbit of our particte 
6, fj the endpoints of the minor axis. The corresponding values of the eccen- 
anomaly are in that order 

E: o”, 180”, 900, 270”, 

1) It can be proved that they satisfy the 4-dImensionaL LapLace equation as does 
any harmonic function in the physIcaL space If transfered Into the parametric 

space. 
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consequently these 4 points have the parametric coordinates (1,143) 

ring 

a. 1.4. Approximate secular perturbations. 

By straightforward arltbmetic the altitudes Xl,,,, X,,, XIcrXlo are obtained from 
the KS-transformation (1,44). In particubar it turns out that 

‘CIA - XIC - fx:- R,’ -q+ a$ - p,; f pz++p: , (1,144) 

3s -x,0 - 2 (“,p, - DC, f.. - %f3 +- oLyp4) . (1,145) 

The shape of the Kepler orbit may be determined by its axis and its eccentricj.ty 

(1~84) a - i &f+ C$ f wt + 5’ tf,‘+fi’+p$+~~) , (1,146) 

(1,87) e - -2$ (cf,‘+~..+ocj’t~~~- &pr-&p,‘) 3 (1,147) 

its position in space by the two "incLinations" 

6 - 24 (xf#f - x,J 9 ‘ir-- ? (x,8 - x,0) . Pa (1,148) 

With this notation the final, result Is as foLLows 

(1,149) 

The upper sign must be taken for i- 4 b and the Lower for /'==2,3. The verlflca- 
tion of this result Is a Little tedious but straightforward, the identities (1,78) 

and (1,87) 
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being used several times. As always the elements iXZ,& are computed according to 
the rules "initial conditions" of our second procedure (section 1.3.2). 

In chapter 2 (cf. 2.2.5) Dr. Rossler describes four different methods for com- 
puting the motion of a satellite about the earth, taking Into account the perturba- 
tions by the moon and he discusses also their accuracy. The four methods are: 

First method (cf. 2.2.5.2). Companion of the second procedure (section 1.3.3). 
Second method (cf. 2.2.5.3). Companion of the third procedure (section 1.4). 

Computation of the special perturbations of the elements of the osculating or- 
bit by numerical integration of the corresponding differential equations. 

Third method (cf. 2.2.5.4). Analytical first-order perturbations of the elements 
by double harmonic analysis (fourth procedure, section 1.5.1). In particular 
secular perturbations. 

Fourth method (cf. 2.2.5.5). Secular perturbations according to the formulae 

(1,149). 

The orbit of the satellite under consideration has eccentricity 0.5 and high in- 
clination with respect to the ecliptic; the very small difference between the re- 
sults of the second and third methods is due to the perturbations of higher order, 
the fourth method gives the perturbations of the elements with an error of only a- 
bout 4%. The reason for this is not the high eccentricity or Large inclination but 
is simply the truncation of the Legendre series. (The ratio c2: z is 7: 6.). 

We have not established a companion formula to (1,149) for the perturbation of 
time. According to our fourth procedure, to do so would require as a prerequisite 
the computation of 

(1,117) (1,150) 

In the three-body problem the Aai and d/j appear as series of the type 

(1,128), but if these series are inserted into (1,150) the secular terms cancel out 
because of the well-known fact that there is no secular first-order perturbation of 
the axis of the osculating orbit. Thus 

Aa = L Q cis(zvwt np-UJS , (1,151) 
Cn, v) 

)Ly 

with unspecified coefficients a,,. For the evaluation of the secular perturbation 
(1,116) of time the constant term CZoo of this series Is needed; this term Is de- 
termined by the initial conditions at instant S - 0 : 

Aa=o, aoo= (1,152) 
In, U) 

Therefore all the coefficients a,,, with (n,Vj # cO,O) should be lcnown and con- 

sequently also all the Fourier coefficients of the expansion (1,139) of the per- 
turbing potential are required. We recall the fact that three of these coefficients 

were sufficient for establishihg the secular perturbations of the elements. This 
complication makes It impossible for us to establish a formula for the perturbation 
of time which is as simple as (1,149). A similar complication occurs in the classi- 
cal theory if the perturbation of the mean anomaly is wanted. 
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Not onLy perturbations by a third body can be computed by our anaLyticaL 
theory, but also perturbations of other types as for instance that generated by the 
aspherlcltg of the earth. But in that case convergence Is not so rapid because the 
perturbing potential is no Longer regular at the origin (center of the earth) as is 
assumed In section 1.1. 

1.6.4 An ejection orbit. In order to demonstrate the merits of reguLarization. we 
compute in this section expLicitLy the secular perturbations of an ejection orbit. 
(Fig. u). A particLe Is ejected from the origin 4 into the X,,X,-pLane. 

Under the InfLuence of the attraction of the central body (located at A ) its un- 
perturbed orbit is a segment AC with apocenter at c. Let p be the angle be- 
tween this segment and the Xv-axis and &Z- 7 the distance AC. The perturbing 
Gaussian ring is stlLL a circle in the X2,X,-plane with radius CL. The unperturbed 
as weLL as the perturbed orbit are In the X,,X,-ptane; therefore it is sufficient 
to take only this pLane and the U,,L(,-plane of the parametric space Into consider- 
ation. The correspondence between these two planes is given by Levi-Civita's trans- 
formation (1,251) 

L 
4 - 

L 
+-LCI J x2 - 2u,u, 9 

or in compLex notation (1,153) 

x- Lc 
2 

h - x, + L x, , LL- u,+iuJ * 

The orbit in the parametric space is thus the straight Line CC buiLdlng the angLe 
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f~ with the u,-axis and the parametric coordinates of the upper point C are 

R 
5 - CQS g , LIt*P P Sk. 2 . 

As was pointed out in section 1.3.4 the elements of the unperturbed orbit foLLow at 
once from this information 1) 

(3 -0, %‘O, p,==-g t /?A-= sin 3 . (1,154) 

Furthermore we have according to the definitions (1,146)(1.147)(1,148) 

a-$, e- ‘, e-=-cosp, z- 0. (1.155) 

The perturbations (1,149) are now reduced to 

Aoc, = ~(2-5casp--sLpjcqs~. A+ o, 

A% - K (2 + 5w.p - c&o) a’n $ , Apa = o 

with 

As time goes on, the osculating KepLer orbit is thus given by (1.76) 

u, - &(I- sca5p- cas~)ca5+g f- cm; Sk zE , 

f& - if(2 f 5-p -ca$+sbLf cos$ f shag shbg . 

In the LL,,u,-plane the point c and the point p with coordinates 

if(.-s-y- co.+) cap ) KG! + seas Jo - co+) *it f 

are endpoints of conjugate diameters of the ellipse. In m. a the values 

(1,156) 

(1,157) 

(1,158) 

p= 6-o”, K- -0.1s 

are adopted. The eLlipse in the U,,y,-plane is constructed from the conjugate di- 
ameters. The endpoints of its major and minor axis are mapped onto the apo- and 
pericenter of the oscuLating Kepler eLlipse in the physical X,,X,-pLane. 

This exampbe is also computed in chapter 2 (cf. 2.2.6) by using the fourth 
procedure and double harmonic analysis. The Fourier expansion of (AC+) is printed 
out. Furthermore the same investigations are carried out for a circular unperturbed 
orbit in the X,,X,-pLane {cf. 2.2.7). The rate of convergence of the Fourier-series --- -- 
Is about the same for this circular orbit as for the ejection orbit. ------ ---- 

1.7 On stability and convergence 

In this section some remarks are added concerning the numerical stability of 
the Integration of the differentiaL equations and the convergence of the Fourier- 
series; we do not attempt to estabbish a complete analysis of this kind of probtem. 

1) The etements a,, a4Jp3 >$4 vanish for aLL the orbits under consideration. 
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1.7.1 StabiLity of pure KepLer motion. The reguLarized differentlaL equations are 

(1,74) I+ o’up 0, /L 1,2,3,4, (I*1591 

where accents mean differentiation with respect to the fictitious time J defined' 
by 
(1,47a)(1,45) &=-PO!&, f-&g. (1,160) 

The four -own functions 5 fs) are subjected to given initiat conditions at 
Instant J-0 : 

5(o) - h+), , y'lo) - (y'J(/o . (1,161) 

We shalL now discuss the influence of errors A<';I, , A(cl/"j, in the InitlaL 
vaLues on the calculated motion of the particLe, assuming &J fixed and exactLy -- 
known in advance. Such errors generate errors --- 

(1,771 5-j - A C-C+,‘~ , A/, - & A (u,~)~ (1,162) 

of the regularized elements and thus also errors 

of the solutions of our differential equations. It foLLows 

l&+)1 4 ldc+y) -I- IAfij . (1,164) 

Therefore the 1~91 are at a time smaLler than a given quantity E provided the - 
errors of the eLements are suitabLy small: 

Thus we have the result that the differential system (1,159) has the property of 
strict stability. 

Errors of the coordinates UJ may occur at any step of numericaL integration 
and such erroneous values are then used as in-itlal conditions for the next step. 
Because the true motion Is strictLy stable, as Integration proceeds such errors do 
not carry the caLcuLated position of the particle too far away from Its true posi- 
tion. Thus the numerical Integration of (1,159) is numerIcaLLy stable. The classi- 
cal equations of Kepler motion do not share this property. because they are not 
strictty but onLy orbItaLLy stabte. 1) In this section we do not discuss the accu- 
muLation of truncating or rounding-off errors. Chapter 4 wiLL be devoted to some 

1) The reader wilt recaLL that strict stablLlty is a much stronger condition than 
the more usual, orbItaL stability. OrbitaL stabiLity requires onLy that if slightly 
perturbed, the particle foLLows an orbit which Is very cLose to the unperturbed 
orbit, but it may at a Later time be at a position on this orbit quite different 
from the corresponding position on the unperturbed orbit. Strict stabiLity requires 
in addition, that at a Later time these positions are close to each other. 

37 



'aspects of this more difficuLt reaLa of probLems.' 

It must be recaLLed however that the frequency W is determined by the ini-. 
tlaL conditions 

(1.73) 

Consequently it may happen that a sLlghtLy erroneous but constant vaLue of W is 
used at every step of integration. Instead of the true coordinates 

U,d) - “L/’ -s ws + 
fi 

Sk ws 

the modified vaLues 

U+) - “ci caS(c+Aw)J +,+th Ca~+Aw~s (1,166) 

are thus computed, assuming for the sake of simpLicity the Initial vaLues (1,161) 

to be accurate. In order to faciLitate the discussion we introduce a variation A.5 
defined by 

5s Aw -E 
s -. 

w 

Then we have 

or 

L+) - +(stAs). (1,168) 

This equation shows that the orbit is not changed at all, but the calculated posl- 
tiorr of the particle on its orbit moves away from its true position on this orblt; 
this phenomenon is of unstabLe chara.cter since AS is proportIonaL to J. More 
precisely it follows from (1,167) that the relative error of 5 is equal to the 
relative error of w. The motion (1,159) Is thus orbitaLly stable but not strictly 
stabbe. Therefore W should be given with very high accuracy. By virtue of equa- 
tion (1,83) this is equivalent with an accurate vaLue of CZ. As in the classical, 
theory the semi-major axis a is the most important orbital element. 

In practice we are faced of course with a superposition of the two phenomena 
discussed above. Any errors of the position of the particle and its velocities in 
physicab space produce indeed errors of the eLements 0c,. as weLL as an error of 
GJ . Nevertheless It must be stressed that after choice of a fixed value of W the 
numericaL integration of (1,159) proceeds with perfect numerical stabiLity as was 
pointed out in the preceding discussion. This Integration is thus reproduceabLe 
even if different numerical techniques or different automatic computers are used. 

It stiLL remains to discuss the infLuence of erroneous Initial vaLues on the 
physicaL time t if time is computed by 

t-/-c&s. (1,169) 

As at the beginning of this section we assume a fixed and accurate vaLue of the 
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frequency w . As can be seen from (1,81) errors Aw,*~ Ap,. produce a secular per- 
turbation 

(1,170) 

of the time, hence the computation of physical, time is unstabLe. 

We ILLustrate this phenomenon by the foLLowing very simpLe exampte of pLanar 
motion. (Fig. 1.6). The lnltiab position of the partlcLe is the point (GO) of the 

Xf, X,-coordinate system and the InitlaL veLocity Is (O,/). By puting M-f we 
obtain as orbit of the particte the circLe c and the motion of the particLe Is 
determined by 

p- t, (1,171) 

where (0 is the true anomaLy (poLar angle) and t the physicaL time. From (1,165) 

it foLLows 

W-f. (1,172) 

AX2 

m 
F; =P2 

B. 1.6. Stablaity. 

.X1 

Let us assume now that an error f occurs in the verticaL component of the initiaL 
veLocity, such that the InitiaL position (40) remains as before but the inltiaL 
veLocity (O,I+C) is used. According to our assumptions the differentiaL equations 
(1,159) are integrated with the true vaLue (1,172) of W but under the erroneous -- 
initial, conditions 

In order to obtain the resuLts of this integration we compute the corresponding 
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eLements oG$,p~ . From the ruLes "initlaL conditions" of the second procedure 
(section 1.3.2) we have 

CU,Jlo - f > (u& - 0 ; cu;)/o - 0 , 

and thus the errors of the eLements are 

Am,-0, AoL,- o ; Ap, - 0 , @z - & , 

The motion of the particte in the parametric pLane 1s now 

(1,76) % - co5 a.5 , u. - (It &) sin ws 

and for the speclab value s-2.X we obtain &2,--r, u2- 0, hence 

(1,441 Xf - I, x,-o. 

(1,174) 

(1x175) 

The particle Is again at its initial position, this is to say at point p, of 
a. 1.6. The corresponding value of physicaL time Is 

At this instant the anomal.y of the particLe on its true orbit is p- 2X(f+E) -- 
as foLLows from (1,171) and the corresponding point is denoted by c inFig.1.6. 
After one revotution we have thus the error 2X.E In the true anomaLy. After many 
revoLutions this error is muLtipLied by the number of revoLutions and this resuLt 
demonstrates cLearLy the InstabiLity of the computation of motion. 

In contrast to these considerations let us discuss now what happens if the 
motlon is determined by integration of the cLassicaL equations of ceLestiaL me- 
chanics. The erroneous initiaL conditions (1,173) put the particle on the eLLiptic 
orbit e of x. 1.6. Its semi-major axis a is determined by 

(1986) 
4 -w 

a 
.z-(fttJL- I-.?!&, a - I+Zc 

and the corresponding revoLution time Is according to KepLer's third Law 

After this time the particLe is again at initial position e-4 but on its 
true orbit it is at position -- 7, corresponding to the vaLue p - 2X(/+ 3r) of 
the true anomaLy. In this case we have therefore after one revoLution the error 
&& in the c anomaby. 

We may thus estabbish the foLLowing concbusion. In this exampLe the reguLar- 
ized method is characterized by a miLd instability, due to the underLying correct 
vaLue of W; but the cLassicaL method has a sharp InstabILity, the ratio of the two 
instabibitles being about /:3. 

As above we may venture to predict now the accumulation of truncation- and 
rounding-off errors during a numericaL integration. If reguLarized methods are used 
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the errors of a slngLe integration-step deteriorate as aLways the accuracy of the 
initial. conditions for the next step. But because the same fixed vaLue of &J is --- 
used at each step, we may hope that the accumuLation of errors is aoverned by the -- 
miLd InstabiLity and is thus more favourabLe than for the cLassIca differential e- --- --- 
cuations. This prediction is corroborated by the numericaL experiments in chapter 4 
of this report. 

We may summarize these considerations as foLLows. Cur regutarized methods are 
characterized by a neat separation of the computation of the orbit from the deter- -- ------ 
mlnation of the position of the p articLe -- -- in its orbit. This separation may be con- --- 
sldered to be an advantage since it has the tendancy to stablLize the computation. 

Cur discussion of stabiLlty brings out the deeper reason for our attitude in 
preferring the companions of the second and third procedure (cf. 1.3.2 and 1.4) to 
the procedures themselves; in the companions the dominant part of the physlcab time 

b (that is the Kepler-time t, ) Is computed by an explicit formula and not by nu- 
merical integration. 

1.7.2 Convergence of Fourier expansions. We now proceed to discuss a very simpLe 
example which demonstrates the advantage of expansion with respect to the eccentric 
anoma'ly in contrast to expansion with respect to the mean anomaly. We restrict our- 
seLves to plane motion of the particle (Fig. 1.7). As always the central mass PI 

is located at the origin and r is the distance of the particle from the origin. 

Convergence of Fourier expansion. 

Let furthermore the particte be subjected to a conservative perturbing potential 

Vh-) which depends onLy on the distance P and Is an anaLytic function of the 

complex vari.abLe P reguLar for aLL values of r satisfying 

Irl 4 a . (1,176) 
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This situation occurs for instance if the perturbing potentiat-is generated by a 
circuLar Gaussian ring (cf. 1.6.2) of radius z Lying In the pLane of motion and 
centered at the origin. 

On a Kepter eLLipse with semi-major axis Q and eccentricity e, the distance 
of the particLe is 

P -=a(/-- ec05E), (1.177) 

hence the potentiaL is transformed into an anaLytic function of the compLex varia- 
bLe E which is the eccentric anomaLy. We shaLL now discuss the domain of regutar- 
ity of this function. We put 

E- p+iyJ (1,178) 

and we have accordingLy 

I-ecaE= I-e(coS~.-~--iJin~.S~~), 

where I%, s/z are the hyperboLlc functions. Thus 

II- e casEI = f-2eco.sp.CiCIp t e~~~~~~.Uz~*~i~z~.sXz~~ 

= I- Pe w5p.Uy, f e'(U'V- ~Ix~j2.j. 

this expression attains its maximum vaLue for p-e, this vaLue being 

Let now PO be the soLution of the equation 

(1.179) 

(1,180) 

Tnis value '& does exist as a real and positive quantity if 

this is to say if the apocenter (and consequentLy the Kepber elLipse) Is welL in- 
side the circle of radius z described above. Assume now 1~14 pa. From this 
hypothesis and from (1,179)(1,~80) It foLlows IrlL a. Thus the potential 1/ is 
regutar in the Interior of the horizontaL strip IV1 4 J+Jo of the compLex E-pLane. 

(pig. 1.7). Since V i s a periodic function of E with reaL period 2X, the 

Fourier expansion of V with respect to E converges in the interior of this 
strip and in particuLar it converges uniformly for aLL reaL values of the eccentric 

anomaLy E. 

Let us consider now the famiLy of orbits contained in the interior of a con- 
centric circte of radius 2 6.. For any orbit of this famiLy we have 
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and 

For aLL the orbits of the family the function V Is thus regular In the common 
strip Iv,1 C X?S regardless of the eccentricity of the orbit and even for a coL- 
Lision orbit (the segment OA in m. 1.7). The rate of convergence of the Fourier- 
series of V with respect to E is determined by the breadth of this strip; hence 
the convergence is uniform with respect to the lndividuats of our family incLudlng 
the coLLision orbit with e-f. 

The situation is different if the mean anomaby m . is used as independent var- 
iabLe, defined by the KepLer equation 

m - E-e s/af?- (1.181) 
. 

In order to estabLish V as a function of 77l, this equation must be solved with 
respect to f. This operation produces new singularities namely branch points in 
the compLex m-plane determined by 

h-f efa5E 0 
dE - 

= . 

One solution E, of this equation is a point on the imaginary axis of the E-plane 
and the corresponding branch point m, is also on the imaginary axis of the m- 
plane. If the eccentricity e increases and approaches its Limit 1, the points 
E,,m, approach the real axis of their planes. Because m, is a singularity of 
V (considered as function of m ), the Fourier expansion of V with respect to 
?72 wilL converge very poorly for highly eccentric orbits of our family and we have 
no Longer uniform convergence in our famiLy. 

As we can see from this example, the convergence with respect to m Is ex- 
tremely sensitive to the eccentricity of the orbit, whereas the expansion with re- 
spect to ,!? does not suffer from this disadvantage. 

More information about the rate of convergence of such Fourier-series is a- 
vaiLable by consulting the theory of asymptotic behaviour of the Fourier coeffi- 
cients of analytic functions. 

I .8 Conclusions 

We List here some characteristic properties of the reguLarizing methods that 
are presented in this report. We also compare these methods with some cLassIca 
procedures. Only the KS-reguLarizatlon (cf. 1.2.1) Is considered. 

1.8.1 GeneraL theoreticat aspects. 

- ReguLarized methods are not sensitive to the eccentricity of the (unperturbed) 
orbit, they remain efficient for collision orbits without Loss of accuracy or con- 
vergence. 
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- The differential equations of a pure Kepler motion are Linear. This lncorpo- 
rates the theory of perturbed motions into the weti-explored realm of forced osci1- 
1atlons with non-linear restoring forces; discussion of stability and error propa- 
gation is thus facilitated. 

- Because the coefficients of these linear differential equations are constant, 
the methods of "perturbations of coordinates" and "perturbations of elements" are 
practica%Ly equivalent in contrast to the classical approach. 

- The regul.arized orbitaL etements are unambiguously defined even for a cotLid- 
ing osculating orbit and determine this orbit unambiguousLy. They obey a 6impl.e set 
of differentlat equations. But since there are 8 such elements and since the flcti- 
tious time J is introduced, a system of 9 or 10 first order equations must be ln- 
tegrated. The cLassIcaL theory uses 0nl.y 6. 

1.8.2 GeneraL perturbations (Double Fourier expansion). 

- In all our experiments the rate of convergence of the Fourier-series was not 
apprec1abl.y infl.uenced by the eccentricity of the osculating orbit; in particular 
it was for ejection orbits as weLL as for nearLy circular orbits. 

- However the formal apparatus Is sl1ghtl.y more complicated than in the classi- 
cal. Lagrange theory. In particular, the theory of the oscuLatlng orbit was devel- 
oped onLy for the case of a finite semi-major axis. (No parabolic or hyperbolic 
osculating orbits). 

1.8.3 Numerical. aspects. 

- The use of the fictitious time S causes a modification of the step Length of 
Integration which gives a 'SLOW motion picture" of the particl.e's motion in the vl- 
cinity of most sharp bends in the orbit and, in partlcuLar, when the partlcbe is 
near to the attracting center. This property is advantageous for the computation of 
transfer orbits from one celestial body to another. 

- However, because the physicat time I? appears as a function of the independ- 
ent variable 5, the computation of particle's position at a given time t Is only 
feasible by interpol.ation. 

- In our numerIcaL experiments we always used the Runge-Kutta method for inte- 
gration of differentlaL equations. Error propagation was more favorabLe by far for 
the regul.arised computation of the coordinates Xi (pure Kepler motion) than for 
the integration of the ClassicaL equations 

(Cowel,L's method). With high probability this statement wilL remain true for per- 
turbed orbits and if elements instead of coordinates are used. 

- Consequently a Larger step may be used than for classical, integration. This 
advantage outweighs the increase of numerical. labor due to the transformation of 
coordinates and time and the higher number of differential equations required by 
regutarlzed methods. 
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- Therefore regularized methods may be more economical than cLassIcal ones, In 
partlcutar If there Is high eccentricity. This prediction was corroborated by ex- 
periments of Dr. Wsster (cf. 2.1.6). He computed the perturbations AXL of the 
coordinates: 

1. By our second procedure (cf. 1.3.2). 
2. By Encke's method [6, page 1761. 

- There are more refined methods for numerical Integration than Runge-Kutta (for 
instance Fehl.berg's method). If they need the derivatives of the perturbing forces, 
regularized methods are not advantagsous, since the transformatlons involved in 
reguLarlzatlon compLlcate the computation of such derivatives. 
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2. COMPUTATIONAL PROGRAMS FOR SPECIAL AND GENERAL PERTURBATIONS 

WITH REGULARIZED VARIABLES 

by M. R6ssLer 

2.1 The program NUMPER ("numerical, perturbations") 

This program (Appendix 2.1) Is a synthesis of the companion procedures of the 
second and third procedure described In sections 1.3.3 and 1.4. As perturbing force 
0nl.y the gravitational influence of a third body is taken Into account; for other 
perturbing forces a speciaL subroutine must be built In by the user. The motion of 
the perturbing body Is either assumed to be an unperturbed Kepler e1Llpse or It can 
be given by an ephemeris. In the Latter case interpoLatlon Is carried out by La- 
grange's formula. Numerical integration is performed by the Runge-Kutta method. 

2.1.1 List of symbols. The program Is written in ALGOL 60, therefore some modlfl- 
cations of the symbols used In chapter 1 are needed. 

real 

TO = instant of physical time attached to the given Initial conditions. 
H = total energy h of the part1cl.e per unit of mass at time TO (only 

needed for ejection or near-ejection (cf. 1.3.4)). 
M = gravitationaL parameter of the central body (product of gravitational 

constant and mass). 
X1,X2,X3 = coordinates of the particle in physical space. 
R = distance of the particLe from the centrat body In physical space. 
V1,V2,V3 = components of velocity of the particle In physicaL space. 
v = magnitude of vel.ocity of the partlcte in physical space. 
OM = u (cf. (1,73)). 

Cl = 3 X((9):+ (PjC) I c2 = $ x(("j)z- (fj,.'), c3 = L(~j)j,.(fj). j 

where (aj)e and (pi). are the eLements of the initlaL osculating 
Kepler orbit (cf. second procedure of chapter 1). 

MP = gravitational parameter of the perturbing body. 
XPl,XP2,XP3 = coordinates of the perturbing body. 

RP = distance of the perturbing body .from the centrat body. 
VPl,VP2,VP3 = components of velocity of the perturbing body. 
VP = magnitude of velocity of the perturbing body. 
OMP = angul.ar velocity of the perturbing body to be computed by the followi] 

modification of formula (1,73) 

OMPt2 = (M+MP.)/RP/2-VP*VP/4 , 

where RP and VP are Initial distance and velocity. 
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- 

CPl = 

I 

) I CP2 = CP3 = ~~j~j , 

where Sj and p; are the elements of the Kepler orbit of the per- 
turblng body. 

I 
The symboLs In square brackets above and In what foLlows are only needed If the 
perturbing body moves In a pure Kepler orbit. 

c 
TBEG = inltla~ Instant of the ephemeris of the perturbing body. 
MTAB = step of the ephemeris. 
TFL I = scaLlng factor for adaption of the unit of Length in the ephemeris to 

the unit of Length in the program. (The coordinates XPl,XP2,XP3 are 
obtained by multipLyIng the rectangular coordinates of the ephemeris 
by this factor.) 

The symbols in curly brackets above and In what follows are only needed if the 
motion of the perturbing body Is given by anephemeris. 

Pl,P2,P3 = components of the perturbing force In physical space. 

SUM = C qj Uj , where qj and Uj are the components of the perturbing 
force and the velocity in parametric space. 

A = semi-major axis of osculating orbit (only needed If the third proce- 
dure Is used (cf. 1.4)). 

DR = hr = perturbation of the distance of the particle from the central 
body (only needed If the second procedure Is used (cf. 1.3.3)). 

DS = step of Runge-Kutta Integration (fictitious time). 
TMAX = integration Limit (physical time). 

S = fictitious (reguLarized) time of the particle. 
SP = fictitious time of the perturbing body. 
T = physical time. 

integer 

N = number of differential equations to be integrated (for N=lO the 
companion procedure of the second procedure Is carried out, and for 
N = 9 the companion of the third procedure). 

NTAB 

I 

= number of entries in the ephemeris, diminished by one. 
NDEG = degree of the Lagranglan lnterpotatlon po~ynomlaLs. 

NOUT : after NOUT Runge-Kutta steps the physIcaL time, coordinates and veLocl- 
ties and the perturbed elements of the particle are computed and 
printed out. 

booLean 

NEARCENTRB : If true, the partlcte Is assumed to start very near to the origin 
or exactly at the origin (cf. 1.3.4). then the value of H Is needed, 
and Vl,V2,V3 may be put In with an arbitrary scaLing factor, so that 
they Indicate onty the direction of Initial VeLocity, 

If faLse, normal InitlaL conditions as described In the second 
procedure. 

array 

ALO,BEO[1:4] = (%)a t (PjL = elements of the InitlaL oscuLating KepLer 
orbit. 
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AL,BE[1:4-J = aj, pj = perturbed eLements (varying with time). 
U,DUDS[1:4] = Uj 8 Uj’ = parametric coordinates and veLocltles of the partl- 

cLe. 
ALP,BEP[1:43 = 

[ 

sjn pj = eLements of the perturbing body. 
UP[1:43 = parametric coordinates of the perturbing body. 1 
TAB[1:3,O:NTAB] = coordinates c Zi (t,) of the perturbing body taken from the 

ephemeris. 
LAM[O:NDEG] = 1 FCT[1:3] = 

DEL[l:N] = 

&[I:43 = 

G[l:N] = 

1, = coefficients of Lagrange's InterpoLatlon formula. 
Zii(t) = Interpolated coordinates of the perturbing body. 

either ( Aaj,Aaj, At, W ) If the second procedure (N = IO) Is 
used 

or (Aa;, A(3;, At ) if the third procedure (N = 9) is used, 

where A-j, Apj = perturbations of the eLements, ht = pertur- 
bation of time and W = work done by the perturbing force. 
components of the perturbing force In parametric space. 
right-hand sides of the dlfferentiaL equations. 

2.1.2 UnderLying formulae. 
2.1.2.1 Initial conditions of the particle at Instant T = TO : -__----_-_----__---------------------------------------------- 
a) NEARCENTRE = faLse (normal initial conditions). 

Given: inltlaL position X1,X2,X3 and InitiaL veLoclty Vl,V2,V3. We compute lm- 
mediateLy w and the elements (aj)e,(pj)m , choosing IA,= 0 or 1-4~ - 0 
(cf. (1,47)), thus 

R := SQRT(Xl*Xl+X2*X2+X3*X3); (2.1) 
if X1)0 then - 

ALO[l] := SQRT( (R+X1)/2); ALO[2] := X2*ALO[l]/(R+Xl); 
AL0 [S] := )U+ALO[l]/(R+Xl); AL0[4] := 0; 

eLse 

!-IL0 PI := SQRT((R-X1)/2); ALOCI] := X2*AL0[2]/(R-Xl); 
AL0[3] := 0; AL0[4] := X3*AL0[2]/(R-Xl); 

1 

(22) 

V := SQRT(VlrVltV2+V2+V3+V3); (2,3) 

OM : = SQRT (M/R/2-WI/4 ) ; 
BEO[l] := ( ALO[l]*Vl+ALO[2]~V2+AL0[3]~V3)/OM/2; 
BE0[2] := (-AL0[2]*V1+ALO[I]*V2+ALO[4]*V3)/OM/2; 
BE0 [S] := (-ALO[3]*V1-ALO[4]*V2+ALO[1]*V3)/OM/2; 

1 

(2,4) 

BEO[4] := ( ALO[4]*Vl-ALO[3]*V2+ALO[2]*V3)/OM/2; 
b) NEARCENTRE = e (start near the origin or exactLy at the origin). 

Given: H,Xl,X2,X3 and Vl,V2,V3 down to an arbitrary scaling factor. We compute 
R as In (2,l); OM := SQRT (-H/2); V as In (2.3); 
if R=O then 

ALO[l] := AL,O[23 := AL0[33 := ALOr := 0; 
if VI)0 then - 

BEO[l] := SQRT( (V+Vl)+M/V)/OM/2; BEO[2] := V2*BEO[l]/(V+Vl); 
BEO[3] := V3*BEO[l]/(V+Vl); BEO[4] := 0; 

eLse 
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BEO[2] := SQRT((V-Vl)+M/V)/OM/2; BEO[l] := V2"BE0[2]/(V-Vl); 
BEO[3] := 0; BEO[4) := V3“BEO[2]/(V-Vl); 
etse 

ALO[l],ALO[2],ALO[3].ALO[4] according to (2,2); 
true magnitude of veLocity VC from 
VC := SQ,RT(2rM/R-4+OM*OM); 
BEO[l],BE0[2],BE0[3],BE0[4] according to (2,4), but with the 
true veLocities Vl/V*VC,V2/V+VC.V3/V*VC Instead of Vl,V2,V3. 

In aLL cases.we atso compute 
Cl := ( ALO[1]?2+ALO[2]t2+ALO[3]t2+ALO[4]t2+BEO[1]t2+BEO[2]t2 

+BEO[3]t2+BE0[4]t2)/2; 
C2 := ( ALO[I]?2+ALO[2]t2+ALO[3]t2+ALO[4]t2-BEO[1]?2-BEO[2]t2 

-BE0[3]?2-BE0[4]?2)/2; 
C3 := ALO[1]rBEO[1]+ALO[2]+BEO[2]+ALO[3]~BEO[3]+ALO[4]+BEO[4]; 

t&5) 

2.1.2.2 Perturbing body on a KepLer orbit: ------------------------------------------ 
ELements of the orbit as in 2.1.2.1 a), but repLace X1,X2,X3 by XPl,XP2,XP3; 
Vl,V2,V3 by VPl,VP2,VP3; ALO[1:4],BEO[1:4] by ALP[1:4],BEP[1:4]; OM by OMP and 
M by M+MP. FinaLLy compute CPl,CP2,CP3 as in (2,5), but repLace ALO[1:4],BEO[l:4] 
by ALP[l:4],BEP[l:4]. 
Computation of the coordinates of the perturbing body at any time T: 

SoLve the following Kepler equation with respect to SP 
T-TO = SP*CP1+SIN(2+0MP~SP)/OMP/2+CP2+(1-COS(2*OMP*SP))/OMP/2*CP3; 
(In the program the soLution of this equation is performed by Newton's method, 
taking as InitiaL guess SP := (T-TO)/CPl-CP3/CPl/OMP/2). 
for J := 1,2,3,4 - do UP[J] - := ALP[J]*COS(OMP*SP)+BEPEJI+SIN(OMPrSP); 
XPI := UP[l]t2-UP[2]t2-UP[3]t2+UP[4]t2; 
XP2 := 2*(UP[l]*UP[2]-UP[3]&P[4]); 
XP3 := 2*(UP[l]*UP[3]+UP[2]*UP[4]); 

2.1.2.3 Perturbing body given by ephemeris: ____-----_--------------------------------- 

Lagrange lnterpobation coefficients XI, = (-l)"(L) , where n = NDEG, k running 
from 0 to NDEG. In the program these coefficients are computed by recursion. At a 
given instant T the coordinates FCT[1:3] of the perturbing body are computed by 
Lagrange's formula; the program chooses the tabular values to be used for this pur- 
pose. 
2.1.2.4 Rl@t-hand sides GIl:N] ______---_- --------------- --- of the differentiaL equations: ___------__----- ------ mm----- 
(For any value of the Independent variable S and the corresponding array DEL[l:N]). 

T := TO+C1~S+C2+SIN(2*OM+S)/OM/2+C3+(1-COS(2+0M*S))/OM/2+DEL[~]; 
for this time T compute the position XPl,XP2,XP3 of the perturbing body ac- 
cording to section 2.1.2.2 or 2.1.2.3. 

Perturbed eLements: AL [Jl := ALO[J]+DEL[J]; 

BE[Jl := BEO[J]+DEL[J+4]; (J := 1,2.3,4) 

Parameters of the particle: U[J] := AL[J-JrCOS(OM+S)+BE[J)*SIN(OM*S); 
Parametric vebocltles: DUDS[J] := OM*(-AL[J]&!IN(OMIS)+BE[J]+COS(OM+S)); 
Distance of the particle from the central body: R := u[1]t2+u[2]t2+u[3]t2 

+U[4]?2; 
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Coordinates of the particLe: Xl := U[l]?2-U[2]?2-U[3]?2+U[4]?2; 
X2 := 2*(U[l]*U[2]-U[S]*U[4]); X3 := 2*(U[l]*U[3]+U[2]~U[4]); 

Computation of the perturbing force: 
DEN? := ((X1-XP?)t2+(X2-XP2)?2+(X3-XP3)?2)?1.5; 
DEN2 := (XP1?2+XP2t2+XP3t2)?1.5; 
in physical space: PI := -MP*((Xl-XP1)/DENl+XPl/DEN2); 

P2 := -MP*((X2-XP2)/DENl+XP2/DEN2); 
P3 := -MP*((X3-XP3)/DENl+XP3/DEN2); 

in parametric space: Q[l] := 2*( U[l]*Pl+U[2]*P2+U[3]*P3); 
Q[2] := 2*(-U[2]*Pl+U[1]*P2+U[4]*P3); 
Q[3] := 2+(-U[3]*Pl-U[4]*P2tU[l]*P3); 
Q[4] := 2*( U[4]*Pl-U[3]*P2tU[2]*P3); 

Computation of SUM = xgjujl : 

SUM := Q[l]*DUDS[l]+Q[2]*DUDS[2-j+Q[3]*DUDS[3]+Q[4]*DUDS[4]; 
If N=lO (companion of the second procedure) then - 

G[J] := -(R+Q[J]+2rDEL[10]+U[J])/OM/4+SIN(OM*S); 
G[J+4] := (R*Q[J]+2*DEL[lO]rU[J])/OM/4+COS(OM*S); (J := 1,2,3,4) 

Computation of the perturbation of distance DR: 
DAL2 := (~*ALO[I]+DEL[I])~DEL[I]+(~*ALO[~]+DEL[~])*DEL[~] 

+(2~ALO[3]+DEL[3])*DEL[3]+(2rAL0[4]+DEL[4])*DEL[4]; 
DBE2 := (2+BEO[l]tDEL[5])~DEL[5]+(2*BEO[2]+DEL[6])rDEL[6] 

+(2rBEO[3]+DEL[7])~DEL[7]+(2rBE0[4]+DEL[8])*D~[8]; 
DALBE := ALO[l]*DEL[5]+BEO[l]cDEL[l]+DEL[l]~DEL[5]+ALO[2]~DEL~6] 

+BEO[2]+DEL[2]+DEL[2]*DEL[6]+ALO[3]*DEL[7]+BEO[3]*DEL[3] 
+DEL[3]*DEL[7]+ALO[4]~DEL[8]+BE~[4]rDEL[4]+DEL[4]~DEL[8]; 

DR := (DAL2+DBE2)/2t(DAL2-DBE2)/2+COS(2+0M*S)+DALBEISIN(2*OM*S); 

G[91 := DR; 

G[lOl := SUM; 
eLse (companion of the third procedure) 

semi-major axis A of the osculating orbit: 
A := (AL[1]?2+AL[2]?2+AL[3]?2+AL[4]?2+BE[l]?2+BE[2]?2+BE[3]?2+BE[4]?2)/2; 

G[J] := -A/cI~(R~Q[J)+D~s[J]~S~/~/OM)/~M/~*~IN(OM+S); 
G[J+C] := A/Cl*(R~Q[J]+DUDS[J]+SUM/OM/OM)/OM/4+COS(OM*S); (J := 1,2,3,4) 

G[91 := SQRT(A/C1)~R-(C1+C2*COS(2*0M+S)+C3rSIN(2*OM+S)); 

2.1.2.3 ----m- DifferentiaL eguations: __-----_-------- ------- 
DEL[J]' = G[J]; (J = 1 , . . .;N) 

(where the accent means differentiation with respect to S). 
Integration Is performed by a Runge-Kutta subroutine. 

2.1.2.6 Output formuLae: _____-____-------------- 
T,x~,x~,x~,AL[I:~],SE[I:~] as computed In 2.1.2.4. 
VeLocitles of the particLe in physical space (if R&O): 
If N=lO then - ~1 := 2/RI(U[?]rDUDS[l]-U[2]*DUDS[2]-U[3]+DUDS[3]tU[4]rDUDS[4]); 

v2 := ~/RI(U[I]~DUDS[~]+U[~]~DUD~CI]-U[~]~DUD~[~]-U[~]~DUDS[~]); 
~3 := 2/Rr(U[1]rDUDS[3]tU[2]*DUDS[4]+U[3]*DUDs[l]+U[4]rDUDs[2]); 
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else compute Vl,V2,V3 as for N=lO. but with the factor 
~/RISQRT(C~/A) instead of 2/R. 

g N=lQ then the left- and right-hand sides of the equation (1,97) 

R+Dn.[lO] = ~~~M~~*((~~ALO[~]+DEL[~])~DEL[~]+(~~AL~C~]+D~,[~])~DEL[~] 
+(~~ALO[~]+D~,[~])~D~,[~]+(~*A~O[~]+DEL[~])~DEL[~]+(~~BE~[I]+DEL[~])~D~[~] 
+(2*BEO[2]+DEL[6])*DEL[6]+(2rBEO[3]+DEL[7])+DEL[7]+(2rBEO[4]+DEL[8])*DEL[8]) 

are computed and printed out as check. 

2.1.3 Input and output. Because ALGOL 60 does not include Input and output, the 
following description refers to our experiments on a Control Data 1604-A computer 

KU. 
2.1.3.1 Input: ----------- -- 
At first the units of length, mass and time must be chosen; they are arbitrary. The 
input Is listed on punched cards In the following sequence, with the values being 
legal ALGOL numbers (arbitrary signed or unsigned, decimal or exponent notation), 
except for the boolean variable NBAFiCENTFlE, where the value must be a plus (=false) 
or a minus (&rue) sign. Each value must be followed by a comma; the number of val- 
ues per card, the length of the numbers, and the number of spaces are arbitrary. 

Symbol used 
in the program input 

N 

NIZARCENTRE 

1 II 

M 

x1,x2,x3 

V1,V2,V3 

MP 
NTAB 

If NT-0 then - 

KP?,XP2,XP3 

[ VPlrVP2,VP3 

else 

NDEG 

I 

TBEG 
DTTAB 
TFL 

Set =lO, If companion of the second procedure is desired, 
set = 9, If companion of the third procedure is desired. 
Set true or false according to the rules outlined in the -- 
list of symbols. 
Initial time. 

Value of Initial energy, only to be set if NEARCENTFiE=true -3 
Gravitational parameter of the centraL body. 
Initial coordinates of the particle at time TO. 
Components of Initial velocity of the particle at time TO. 
(Observe modification indicated in the list of symbols if 
NEARCENTRE=true). 

Gravitational parameter of the perturbing body. 
Set =O, If the perturbing body is moving In a pure Kepler 
orbit with given initial data. 
Set =NTAB (as described in list of symbols), if the motion 
of the perturbing body is taken from an ephemeris. 

Initial coordinates of the perturbing body at time TO. 
Components of velocity of the perturbing body at time TO. I 

Degree of the Lagrange polynomials for interpolation In 
the ephemeris. 
Initial instant of the ephemeris. 
Step of the ephemeris. 
VaLue of scaling factor. 
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T~[1,01.T~[2,0l.T~[3,0] 
I Taken from the ephemeris. 
TAB[l.~~],TAB[2,NTAB],TAB[3;NTAB] J 

DS Step of integration. 
NOUT Set according to the list of symbols. 
TMAX Approximate Last time of wanted parti- 

cle position. 

Remarks: 
a) Choice of DS: An appropriate step T In physical time is chosen, and DS com- 

puted from DS = -+T , where r Is the medium distance expected during the un- 
perturbed motion of the particle. 

b) If initial data are of parabolic or hyperbolic type, the machine gives a red 
Light. 

c) If the information delivered by the ephemeris Is not sufficient to carry out the 
Lagrange i.nterpoLation. the machine gives a red Light. 
Therefore at least $ NDEG tabular values should be available before the start of 
particle TO and after Its wanted end position TMAX. 

2.1.3.2 Output: (Appendix 2.2) __-_-__-------- - 
For checking purposes some of the input data as well as some other Important quan- 
tities are printed out immediately In the following order. 

I.1 g N=lO (second procedure) then the basic rule of regularlzation is printed. out 
DT = R*DS, 

else (third procedure) the corresponding rul.e 
DT = s&RT(A/Ao)~R*DS, 

is listed. 

2.1 
3.) 

TO and M are printed out. 

4.) 

Information concerning the particle (referred to as "sateL2ite"): initial coor- 
dinates and velocities and perhaps energy (different versions depending upon, 
whether NEARCENTRE=true or =faLse), semi-major axis, eccentricity and period of 
revolution corresponding to the unperturbed orbit. 
Information concerning the perturbing body: 
g NTAB=O (pure Kepler orbit) then mass, initial coordinates and velocities. 

semi-major axis, eccentricity, period of 
revolution, 

else (ephemeris) mass, ephemeris adapted to the 
- unit of Length used in the program. 

5.1 
The 
1 st 

2 nd 

3 rd 

4th 

5 th 

Step of 
results 
coLumn: 
Co~Llnul: 
col.umn: 

integration DS and value of NOUT. 
of the integration are listed as folLows 
physical time T. 

column: 
column: 

physical coordinates X1,X2,X3 of the particle. 
components of velocity Vl,V2,V3 of the particle. (If collision occurs, 
the components indicate only the direction of velocity, because the 
magnitude of the velocity Is Infinite.) 
perturbed elements ALPHA[J]. 
perturbed elements BETA[J]. (J = 1,2,3,4) 

If N=lO (second procedure), a 6th column Is printed out containing in the first 
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Line the quantity rW = R*DEL[lO] of equation (1.97) and in the sec- 
ond Line the right-hand side of that equation. This is the energy check. 

2.1.4. Description of the program NUMPER. We give a rough description of the parts 
of the program. The foLLowing numbers of the parts correspond to the numbers on the 
Left-hand border of Appendix 2.1. 

part 1: DecLarations of the quantities under consideration. NFCT Is Later repLaced 
by 3. 

part 2: procedure REGEL: computation of the reguLarised InltlaL eLements taking 
into account the different modifications (NEARCENTFLE = true or = faLse), 
computation of the auxlLiary quantities Cl,C2,C3. 
The same procedure Is used for computing the eLements of the perturbing 
body if assumed to move In a KepLer orbit. 

part 3: Read in of most of the data. Activation of procedure REGEL with respect to 
the partlcLe. 

part 4: Some decLaratlons; CS and SN are symbols for cosine and sine, VF Is an 
auxiLlary variabLe. 
procedure LAINTAB determines the set of tabuLar vaLues of the ephemeris to 
be chosen for interpoLation at a given time T and carries out this inter- 
polation. We do not expLain this procedure In detail, because It is a 
standard interpolation routine. 

part 5~ procedure RKlST is the standard Runge-Kutta routine of fourth order. 
H is the step. 

part 6: procedure F is the computation of the right-hand sides G[l:N] of the dif-. 
ferential equations. This procedure runs untlL the end of part 11. 

part 7: Coordinates of the perturbing body if assumed to move on a Kepler ebllpse. 
This part incLudes the soLution of the KepLer equation by Newton's method. 

part 8: Coordinates of the perturbing body if an ephemeris is used; procedure 
LAINTAB is activated. 

part 9: Computation of the coordinates of the particle and of the perturbing force 
In physical, and parametric space. 

part 10: Right-hand sides G[l:lO] of the differential equations, if N = IO (2nd 
procedure). 

part 11: Right-hand sides G[l: g] of the differential equations, If N = 9 (3rd 
procedure). 

part 12: Read In of the remaining data concerning the perturbing body. Computation 
of either the eLements of the perturbing body (activation of REGEL) or the 
LAM[O:NDEG]. 

part 13: Computation of the output data: physIcaL time, coordinates and veLoclties 
of the partlcLe, values of the eLements at the time under consideration, 
as was expLaIned In 2.1.3.2. 

part 14: Integration Loop. 
part 15: Information If errors occur. 
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Remarks: 
For Input and output the speclaL procedures READ and OUTPUT and the decLaration 
format, which are not incLuded in &GOL 60, are used repeatedLy as is the custom on 
our ControL Data 1604-A system. DetalLs about these Input -output faclLlties can be 
found in the reference [8]. Appropriate adaptions must be made if the program Is 
used on another computer. 

2.1.5 First numerical example: Perturbations of a highLy 'eccentric sateLLite orbit 
by the moon. (Appendix 2.2). 
2.1.5.1 Program: ---------------- 
The fobLowing version of program NUMPER (cf. 2.1) was used. 

N = IO (companion of the second procedure (cf. 1.3.3)). 
NEARCENTRE = true (start of the particLe near the centre of the earth), 
NTAB 4 0 (motion of the moon given by ephemeris). 

2.1.5.2 Configuration (Fig. 2.1): ---------------------- 
Attracting centre = earth, at the origin 
particle: unperturbed orbit = elLipse in 
perturbing body = moon, orbit taken from 

of the X4,%,X, -system, 
the x.,x, -plane with B eccentricity, 
the ephemeris [g]. 

2.1.5.3 Units: F-------------- 
Length: I km, mass: I kg, time: I mean sobar day. 
The gravitational parameters are M = 2.965621833-10 I5 , MP = 3.637460852.1013. 

2.1.5.4 Initial coordinates of the particle: ------.--I----------_____________I______---- 
TO = 0, 
H= IlO IO , corresponding to the semi-major axis ?dP, 28’.ogI65 . 
(X~l,X2,x3) = (IO 000,0,0), 
direction of initial velocity (vI,v2,vsj = (o,c,lj. 

This initial position is the pericentre of the unperturbed orbit. The eccentricity 
1s 0.932560518 and the period of revollltion 6.58795532 . 

_2L,---- ------------------- .5.5 Ephemeris of the moon: 
The x,,xs -pLane is the equator of the earth corresponding to the epoch 1966.0 . 
The ephemeris gives XPI,XP2,XP3 with an accuracy of 7-8 decimaLs and with a time- 
step of 0.5 days. The unit of length of the ephemeris is the mean radius of the 
earth, thus TFL = 6 367.672608 . 
We choose NTAB = 32, NDEG = 6, TBEG = -3, DTTAB = 0.5 . 
The initla2 time TO = 0 is the date 243 8941.0 J.D. (= Jan. 4.0, 1966) of the 
originaL ephemeris. 

2.1.5.6 Parameters of integration: _-------------------------- __---- 

DS = IO -6 (approximately 45 steps per revolution), 
NOUT = I , 
TMAX = IO (approximately I .5 revolutions). 

2.1.5.7 Remarks: ---------------- 
For this sateLLite the influence of the moon is the most important perturbation. 
The unperturbed orbit Is well outside the atmosphere and in the interior of the 
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unit of lenght : IO km 

unit of time: 1 mean solar day 

(t =0 corresponds to 243 8941.0 J.D.) 
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eorth (true mogmtude) ->..&-- 
unperturbed sotellite orbit -300 

6 

x. 2.1. First example. Unperturbed orbits. 
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0.511 0.553 o.ps 

7.004 7.133 7.261 1.619 

1 0.069// 6.673 I”... 

eorth (true magnitude) 

Xl -150 

-5o-- 
50 _ _ 5.661 

unit of length: IO km 
unit of time: 1 mean solar day 
(t= 0 corresponds to 243 8941.0 J.D) 

a. 2.2, - First example. Perturbed sateLLite orbit. 



moon's orbit. In a. 2.1 corresponding positions of the particLe and of the moon 
are Indicated (step = 1 day of physical time). 

2.1.5.8 Discussion of the numerical results: --------------_----------------------------- 
The results are Listed in Appendix 2.2. The perturbed orbit is pLotted in B. 2.2 - 
with the points indicating the equidistant vaLues of S. The physical time Gorre- 
sponding to each point is indicated. From this pLot the automatic regulation bf the -- 
step Length performed by the fictitious time can be seen (near the peri- and apo- 
centre the points are much denser than elsewhere). 
A smaLLer integration step does not pay off, because the error produced by the 
ephemeris then becomes dominant. However, the integration with a smaLler step would 
Improve the balance of the energy equation. 
After the first revolution, the satellite has lost about 1.9 of Its Initial energy, 
causing its pericentre to move closer to the earth. 

2.1.6 Comparison with the classical method of Encke. In order to explain briefly 
Encke's method, we introduce the following notations: 

xi, r = coordinates and distance of the particle In the perturbed orbit, 

xiK I rK = coordinates and distance of the particle in .the unperturbed Kepler 
orbit, 

bXi = Xi-xiK , At-x r-‘K = perturbations, 
pi , ~ = coordinates and distance of the perturbing body, 
M , g = gravitational parameters of the central, and the perturbing body re- 

spectively, 

s = distance of the particLe from the perturbing body. 
The classical differential equations for the Axi are 

(2,6) 

and the independent variable is the physical, time t . 
In the following examples either a constant step was chosen or an automatic step 
reguLation was put Into operation. Integration was performed by writing the dlffer- 
ential equations (2,6) as a system of six simultaneous equations of first order and 
using the shme Runge-Kutta method as in the program NUMPER. 

2.1.6.1 Second numerical exampLe: ___------------------------------ 
Perturbations of a highly eccentric satellite orbit by the moon. Units: km, kg, day. 
M = 2.9800083.10'5, E = 3.6656343~10'~. Initial conditions: satelLite on the 

positive X1 -axis at distance 10 000 km, initial velocity parallel to x,-axis of 
magnitude 750 000 km per day (eccentricity of the unperturbed orbit e SW 0.89). 
Moon on a circular orbit of radius 384 400 km In the x,,x, -plane; Initial posl- 
tion on the positive x,-axis. 
For t = 3.1841455 days (about one revolution) the following results were obtained. 
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2.1. Table Comparison of NUMPER with Encke's method for highly eccentric orbit, 

method number step length DS, 
of steps At resp. x4 Xl X3 

NUMPER 

Encke 
constant step 

Encke 
regulated step 

i 
DS = 2.10-5 

5*1oI~ 1 *IO 

60.00 35 379.12. -33 888.55 

E-g 
35 400.52 -33 911.38 

40 
2.10-7 801% 

35 400.52 -33 911.34 
200 35 400.52 -33 911.34 

A: At = 0.2 26.47 62 365.72 -37 286.08 
0.05 15.58 22 144.64 -36 560.63 

3'9 0.01 al.03 35 439.95 -33 g60.8' 
'593 0.002 80.99 35 400.74 -33 911.40 

46 0.152) At )0.0047 at.00 35 404.30 -33 915.00 
103 XE 0.0011g 35 400.64 -33 911.33 
272 

01025 
0.0005g 35 400.50 -33 911.35 

356 0.00040 35 400.52 -33 911.35 

Conclusions: The Encke-method with constant step needs at least 1593 steps to ob- 
tain the accuracy of 8 steps of the regularizing method and can therefore not be 
recommended. With automatic step regulation the corresponding number of Encke-steps 
is reduced to about 100. Although one step of the regularizing method needs about 
3 times as much computing time as an Encke-step, the regularization does accelerate 
greatly the computation of the orbit. 

2.1.6.2 Third numerical example: ------------^------------------- 
Perturbations of an almost circular satellite orbit with high inclination. Unita 
and masses as in the second example. Initial conditions: satellite on the positive 
x,-axis at distance 75 000 km, initial velocity parallel to x1 -axis of magnitude 

200 000 km per day (eccentricity Y 0.007). Moon as in the second example. 
For t = 3.0176050 days (about one revolution) the following results were obtained. 

2.2. Table Comparison of NUMPER with Encke's method for a nearly circular orbit. 

method number step length DS, 
of steps At resp. X4 Xl x3 

NLJMPER : DS = 2'10-5 

40 5.10;: 1 'IO 

-6.31 75 162.85 -7 502.45 
4.37 75 171.71 -7 510.35 

2.10-7 
4.34 75 171.72 -7 510.34 

200 4.34 75 171.72 -7 510.34 

Encke 
constant step :: 

At = 0.2 4.33 75 173.26 -7 508.02 
0.05 4.34 75 171.72 -7 510.33 

302 0.01 4.34 75 171.72 -7 510.34 
1509 0.002 4.34 75 171.72 -7 510.34 

Conclusions: Because the unperturbed orbit Is almost a circle, an automatic regula- 
tion of the Encke-steps would not give an Improvement worth mentioning. Therefore 
a constant step was chosen, making the Encke-method as fast as possible. Four Encke 

steps give about the same accuracy as one step of the regularizing method, and the 
corresponding machine times are almost the same. 

Remark: The program NUMPER will also be used in sections 2.2.5.2 and 2.2.5.3. 
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2.2 The program ANPER ("anaLyticaL perturbations") 

This program (Appendix 2.3) computes the first-order perturbations of the eLe- 
ments o(j, pj (j-4,2,3,)) (oscuLatlng Kepler orbit) and of the physicaL time t 
according to section 1.5 (fourth procedure) of this report. It takes onLy into ac- 
count the perturbations by a third body assumed to move on a pure KepLer orbit. The 
perturbations are evaluated by double harmonic analysis. 

2.2.1 The independent variables. Instead of the variables s,s, used In the theo- 
retical analysis of section 1.5, we introduce modified variabLes which are better 
adapted to numericaL computation. Let E be the eccentric anomaly of the particle 
on Its unperturbed orbit and E, the initial value of E . by taking (1,87) Into 
account, we have 

E = E,+ 2ws . (2,7) 

Thus the definition of s, in section 1.5.2 is modlfled to read 

4 = e (E-E,) 

Q. is related to the mean angular velocity ,u of the particle by (1,84)(1,85); 

therefore 

s4 = @E-E,) . (23) 

As can be seen from (1,129), the integrands f now have the period 2%' in both of 
the variables E and S, . This property still holds true if any constant is added 
‘-0 6, ; thus instead of s, we may use the variable 

E, = SE+= , (2.9) 

where c is a constant to be determined in the following. We introduce for this 
purpose the mean anomalies m,iii of our bodies as welL as their initial values 

m. I is-* . We can write 

m IL z, +pt = ~,+p “;u”t = iii,,+ $(E-erinE)-gm., 

z - (m.-$m.)- c+E,-$-e sinE 

e Is the eccentricity of the particle's orbit, and Kepler's equation has been ln- 
serted. We choose now c= iii.-& me P ;then (2,9)(2,10) are reduced to 

E, = $E + (EC-$- m.) , 

iy, = E,- % e sin E . 
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As follows from the last equation (2,12), this choice has the advantage that E, 
is, apart from a pure periodic term, the mean anomaLy of the perturbing body. As in 
the theoreticat section 1.5 the dynamic situation is determined by the two inde- 
pendent variabLes E,E, , because any choice of E determines the position of the 
particLe and then any chosen vaLue of E, yleLds by (2,12) the mean anomaly of the 
perturbing body. With respect to either of the two variabLes E,E, the fundamen- 
taL period is 2f and is divided into 2N equaL parts for performing the harmonic 
anaLysis. 

2.2.2 The eLements. In order to facilitate the comparison of the regularized com- 
putations with cLassicaL results, we introduce the eLements corresponding to the 
pericentres of the two orbits; however, the initial positions of the two bodies re- 
main general and are aLLowed to be different from the pericentres. From (1,76) and 
(1,87) the coordinates of the partlcLe at instant t = s - 0 are obtained as foL- 
lows 

l"j). = (oCj)* COS + + ((3j)R sin + , 

(2,13) 
(Uj’). = W ‘[- (Uj)R sin 4f + (Ijj)R LOS -!$I , 

where (aj)a, (pj)a are the eLements corresponding to the pericentre of the oscu- 
Lating orbit at instant t = 0 (the subscript R is meant to signify "reduced to 
the pericentre"). Ey solving (2,13) with respect to the reduced elements we have 

(aj)a = (Uj)~ COS 9 - $ (Ujl). sin + , (pj), = (Uj). sin* + 4 (Ui),COS$ , (2,14) 

and 

(1,87) t jlr (Ocj)R (pj)O. = O * 

The same reduction is performed for the perturbing body by introducing the reduced 
eLements 

GqR - e E 
(Uj). COS t - ~ (uj')o Sink , (iS)t2 t&15) 

ANPER computes the perturbations A-j, Apj of the reduced elements (@j)R I (/$)n 
according to the formulae (cf. fourth procedure, section 1.5.1.) 

It computes also the perturbation of time (cf. (1,116)) 

At = $y {(fh + +&&)dE . 
C. 

Any of the eight perturbations of the elements appears in the form of a doubLe 
Fourier potynomial with a secular term 
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c.(E-E.) + a,,,, cos(vE + nE,) + b,, sin v ( E+nE,{ ; 

the coefficients c, a",,, b,, are printed out. This formuLa is anaLogous to 
(1,128a). The perturbation of time At appears in a more complicated form 

c,(E-E.) + ca(E COSE - E.cosE,) + c3(ErinE - E.rinE.) 

+ c ~.L cos (vE + nE,) + b,, sin (vE + nE,,] 

(2,171 

. 

As above, 2N is the number of grid points of the harmonic anaLysis. ALL these nine 
perturbations vanish for t= 0 , that is to say for E-E.‘. 

ANPER performs also the summation of the Fourier-series for a given value of E , 

and the perturbed elements (aj)a + A5 3 (pj), + A pj as weLL as the perturbed time 
t, + At are printed out. The coordinates of the particle - if needed - could be 

computed by hand as follows 

uj - [(aj)a+ A~j].Cos~ + [(Pj),+ACJj].sinc 1 (j==d,2,a,k) * 

the coordinates Xi in the physical space are then determined by (1,44). 

2.2.3 Rules for the user. ANPER is written in ALGOL 60. We do not describa this 
program in detail as we did for NUMPER but restrict ourselves to recording the in- 
and output specifications. Again the special procedures READ and OUTPUT, the decla- 
ration format and furthermore the procedures BINWRITE and BINREAD for handling the 
tapes are used. They are not included in ALGOL 60, but only defined on our Control 
Data 1604-A system [8]; appropriate adaptions must be made if the program is used 
on another computer. 

2.2.3.1 Input: -------------- 
Units of length, mass and time are arbitrary. 
Before going to an etectronic machine the user has to compute: 
- Initial coordinates and velocities of the particle at time t- 0 In physicaL 

space, (ev. given by classical orbital elements), 
- initial position and velocities of the particle in parametric space as in the 

second procedure (section 1.3.2), 

- the vaLue E, of the eccentric anomaly corresponding to the initlaL position 
from the cLassica formuLae of Kepler motion, 

- Initial values of the elements (Wj)a , ((3j)R from (2.14); 

T the same work has to be carried out with respect to the perturbing body 

The input is listed on punched cards in the following sequence; the vaLues must be 
Lega ALGOL numbers, each of them foLLowed by a comma. The number of vaLues per 
card, the length of the numbers, and the number of spaces are arbitrary. 

61 



SymboL used in the program 

M 

EO 

ALO[l],ALO[2],ALO[3],ALO[4] 
BEO[l],BEO[2],BEO[3],BEO[4] 
MS 

ES0 

ALS[l].ALS[2],ALS[3].ALS[4] 
BES[l],BES[2],BES[3].BES[4] 

TF,TFT 

I 

E,E,...,E, * 
(i vs',ues) 

2.2.3.2 Output: (Appendix 2.4) -------..------- - 

Symbol used in the underlying theory 2.2.1,2.2.2. 

M = gravitationaL parameter of the central body 
(product of mass and gravitatIonaL constant). 

E. = eccentric anomaly of the particle at ini- 
tlaL time t = 0. 

(“j h = reduced elements of the particle at the 
(Pi)* I pericentre of the unperturbed orbit. 
fi = gravitational parameter of the perturbing 

body. 
r. = eccentric anomaly of the perturbing body at 

initial time t= 0 . 

(ZJ), 

I (i%), 
= reduced eLements of the perturbing body 

at the pericentre of the orbit. 
N, (PN is the number of points on the two or- 

bits used for the harmonic analysis). 
Scabing factors for the listing of the Fourier 
coefficients; every coefficient of the perturba- 
tion of an element is multiplied by TF, every 
coefficient of the perturbation of time is multi- 
plied by TFT, when it is printed out. 
(The Largest coefficients should have the order 
of magnitude 1011,) 

Summation of the Fourier-series: number of surnma- 
tions to be carried out. 
VaLues of E for which the summation is desired. 

a) For checking purposes at the beg&nix,g of the computation: - --- ---- -. --- -_ .__ -.._ 
tile following information is prlnted Out: 
M,fiO,ALO[l],ALO[2],AL0[3],ALO[4],B~~~~~],BEG[2],6~~~3]~BEO[4], 
AO = semi-major axis of particle's osculating orbit at Instant t= 0 , 
EXZO = eccentricity of particle's osculating orbit at instant t= 0 , 
formuta for computing the unperturbed Kepler time t, (denoted by T), 

MS,ESO,ALS[l],ALS[2],ALS[3],ALS[4),BES[l],BES[2],BES[3],BES[4], 
AS = semi-major axis of the orbit of the perturbing body, 
EXZS = eccentricity of the orbit of the perturbing body, 
formula for computing the Kepler time, 
JKMAX, 
equation (2,ll) (with the numerical values of r P 

and iYia - $ m. ). 

b) Investigation of resonance: (cf. 1.5.2) 
For any vaLue of the subscript v (formulae (2,16)(2,1i)) the value of v+"-$- 
which is nearest to 0 Is printed out (n is the second summation index and p , 
F are the mean angular motions). However, the information is suppressed if 

this minimum of I,+n$l is larger than for a preceding value of v . 

c) Fourier-series of the perturbations: 
In Appendix 2.4 the perturbations Atij,Af$,At of the elements and of the - 
time are denoted by D ALPHA l,....,D ALPHA 4,D BETA l,....,D BETA 4,DT. 
Perturbation of the eLements: after D ALPHA (or D BETA) the chosen scaling 
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factor TF is printed out. It foLLows the secuLar term; in the List of the 
Fourier coefficients the first and second columns Indicate the vaLues of v and 
n , whiLe the third and fourth coLumns contain the cosine and sine coefficients 
(cf. (2,16)). 

Perturbation of the time: after DT the scaLing factor TFT is printed out. The 
secuLar terms appear In the form (2,l7), and the periodic terms are printed out 
according to the same patterri as for the perturbation of the elements. 

d) Summation of the Fourier-series: 
In the first coLunm the chosen vaLues of the Independent varlabLe E are Listed 
again. The second cobumn contains the unperturbed vaLues of the elements and the 
Kepler time fK , the third cobumn the perturbations of the eLements and of the 
time, end the fourth coLumn the perturbed vaLues of the eLements and of the time. 

2.2.4 Remarks. Concerning an appropriate choice for the number N used for the 
harmonic anaLysls we may give the foLtowing rough guess. Let a be the semi-major 
axis of the orbit of the particLe, 1 the minimaL distance between the two orbits 
and d the number of wanted significant declmaLs of the perturbations; then choose 
at Least 

where 109 is the Briggsian Logarithm. 

-Fourth numerical. example: Perturbations computed by four different methods. 
2.2.5-l Configuration: (Fig. 2.3) __________-__---_----- 

5Bbi major axis 

I mot in scald 

m. 2.3. Fourth example. Configuration. 
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Central body: at the origin, gravitationaL parameter M = 1. 
Perturbing body: R = 0.01. The orbit is a clrcLe in the x%,X, -pLane of radius 

Z = 18. InitlaL position (o,0,18), initiaL veLocity (0, 0.23687784006 ,O). 

The corresponding eLements are Z, = 3, Zz = 0, & = 3, zi, = 0, F4 = 0, 

pa = 3, fis = 0, F, = -3 and coincide with their reduced vaLues (Zj)n , 

Cpj)l ; therefore -Fe = 0. 

ParticLe: the unperturbed orbit is an eLLipse with the semi-major axis a = 3, ec- 
centricity e = 0.5, Inclination 39.7' to the x1,x) -plane, start at the peri- 

centre (E. = 2dT'JS 42-6 0). InitiaL posltion(- 3 ,O,E), initlaL veLocity (- , - , 
9 3 

5). The unperturbed eLements are e(, = $ , Q1 =o, I%3 =l, cd, = 0, 

p, = 1, p2 = 1, p,=-$, p/-f- 2 and coincide with the reduced ele- 

ments (dj)R 9 (pj)R i furthermore the two parameters a-, r introduced in sec- 

tion 1.6.3 are p-Jp r+ 

2.2.5.2 First method. Companion of the second procedure isection 1.3.3): --_-----__----------------------------------------------- -------------- 
Program NUMPER. 
Input data: N = 10, NEARCENTRE = faLse, TO = 0, NTAB = 0, DS = 0.1 n (correspond- 

ing to a step 0.1 of E ) (approximateLy 63 steps per revolution), NOUT = 1, 

TMAX = 500 (about 15 revobutions of the particle, and about 1 revoLution of 
the perturbing body). 

The purpose of this computational exampLe is to discuss the goodness of the energy 
balance (cf. 1.3.3, 2.1.2.6 and 2.1.3.2). In a. 2.4 the quantity 

(1,971 r.W - 4W’~ ([(*j). ++Atij] Adj + [(pjZ++Apj] Apj ) 

is pLotted against E =2ws . At the end E = 96 we read for this quantity the 
value 3.61'10~'I, the corresponding vaLue of rW is - 3.07681*10-5, and thus the 
reLative error of the energy check is about 10a6. This Is a satisfactory result. 

2 2 5 3 Second method Companion of the third procedure (section 1.4): ,1,1-',,--------------'------------------------------------------------ 
Program NUMPER. 
Input data: N = 9, NEARCENTRE = faLse, TO = 0, NTAB = 0, DS = 0.1 6 (correspond- 

ing to a step 0.1 of E ) (approxlmateLy 63 steps per revoLution), NOW? =-5, 
TMAX = 500 (about 15 revoLutlons of the-particle, and about 1 revolution of 
the perturbing body). 

The resuLts of this computation are dispLayed in two ways. First, the perturbations 

Atij r AfIj 8 At corresponding to E = 80 (about 13 revoLutions of the particLe) are 
tabulated in Table 2.3 under the heading NUMPER. Second, the perturbations Aoc, -- 
and Aeb are pLotted In Fig. 2.5 and Fig. 2.6 against E . 
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a. 2.4. Fourth example. Energy balance. 



2.3. TabLe Comparison of special perturbations and first-order generaL 
perturbations. 

NUMPER ANPER 

E =80 ,E =80 
A& = 0.00072460 Au, = 0.00073163 
Ati+ = -0.00255181 Aocz = -0.00254 94 0 
AUS = o.oo16g407 Aas = O.OOl69465 
Au, = 0.00033265 A=, = 0.00031g53 

AP, = -0.00055131 A PI = -0.00055084 
Ah = 0.0004g547 A Pr = 0.0004g473 
A B, = o .0004 5080 A 8, = 0.00045364 
AP* = 0.00137048 AP* = 0.00136828 

At = 0.021224 At = 0.021180 

x. 2.5. Fourth example. Perturbation AM,. 

.no* ChXULRTFfl YITH PREGRRH NUMPER: , 

I SECULRR TERH FFib31 PREGRRM RNPffl: 2 I 

0NE AFV. 
0F TH d Mid0N 

aa 2.6. - Fourth example. Perturbation A(j+. 
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2.2.5.4 Third method. Analytical first-order perturbations: (Appendix 2.4) ---------__-___-_------------------------------------------ - 
Program ANPER. 
Input data: EO = 0, ES0 = 0, JKMAX = 13. TF = TFT = 1014, I = 1, E = 80. 
The second and third methods are used to compare the numerical and first-order ana- 
lytical perturbations. Again the results of the third method are listed in Table 
2.3 (under the heading ANPER); the corresponding plot in m. 2.5 and u. 2.6 co- 
incides practically with the plot of the second method. Furthermore the secular per- 
turbations are listed In Table 2.4 under the heading ANPER, and the secular pertur- -- 
bations of Au, and Ap, are plotted in m. 3 and m. 2.6 as straight lines. - 
Appendix 2.4 is a part of the results output by the Control Data 1604-A. - 

2.2.5.5 Fourth method. Secular perturbations according to the formulae (1,144): -----------____-_------------------------------------------------------------ - 
The results are listed in Table 2.4 under the heading (1,149) and plotted (for AU, -- 
and Apr) in m. 2.5 and a. 2.6. Because the ratio of the major axes is rather - 
small, the results of this rough computation have an acceptable accuracy; they co- 
incide with the results of ANPER within a relative error of about 4%. 

Table 2.4. Secular perturbations. 

ANPER (1,149) 

Ati, = 0.27595-10-5 E Aoc, = 
-3 -77738.10-5 E 

0.1g2g0.10-5E 
AC+ = 

2.00678.10-5 E 
Aoc, = -3.66512.10-5E 

Aa, = Aa, = I .glog6-lo-5 E 
Aa& = 0.60747.10-5 E Aa, = 0.68200.10-5 E 

A& = -0.72616.10-5 E Af% = -0.68200.10-5 E 
APa = 0.66424.10-5 E 

0.20442.10-5 E 
Ap, = 0.68200.10-5~ 

AP, = 
1.41og8.lo-5 E 

APa = 0.1g2g0~10-5 E 
AP, = AI% = 1.35031*10-5 E 

At = 3.81647.10-4 E 
+1.05457.10-4 EcorE 
+0.76276.10-4 E sinE 

2.2.6 Fifth numerical example. Convergence of the Fourier expansion in the case of 
an ejection orbit. 

2-2rs-l_,~onfigura4i_on: (Fig. 2.7) 

orbit of the 
perturbing body 
(not I” sa4e) 

arbd of the particle: 1 = ejection orbit 
2 : circular orbit 

m. 2.7. Fifth and sixth example. Configuration. 
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As described in section 1.6.4. The numerical constants appearing in formula (1,157) 
were chosen as follows: -$ = 0.01, $ = a . The same value (4 = 60’ was adopted. 

Elements of the particle: o(j = 0, (j = 1,2,3,4), p, = 4 , (Aa = $ , p, = 0, 

p* = 0. 

Elements of the perturbing body: 
& = $ , F, = 0, ir; = - $ 

Z, = 2 Z% = , 0, x, = - 3 a, = 0, j7, = 0, 

. (Start on the positive ?c,'-axis). 

2.2.6.2 Fourier-series: ----------------------- 
Program ANPER. 
Input data: EO = 0, ES0 = 0, JKMAX = 13, TF = TFT = IO", I = 0. 
In Table 2.5 the cosine-coefficients avn (multiplied by TF) of the Fourier ex- 
pansion 

c (E - E.) + F r [am cos(vE+nE,) + bvnsin(vE+nE.)] 

of the perturbation Am, are listed. A row corresponds to running values of v and a 
fixed value of n . This gives a picture of the convergence of such a series. 

2.2.6.3 Secular perturbations: ----------------_------------- 
They are, computed by ANPER, 

Aoc, = 3.8olg5232.10-6E , Aa, = -11.o4g7488o.lo-6 E ; 

the remaining secular perturbations Aaj,&pj vanish. 

Table 2.5. -. Ejection orbit. Cosine-coefficients of Aoc,. 

0 1 2 3 4 5 6 7 a 

-11 -1 0 0 0 0 0 0 0 
-10 0 0 0 0 0 0 0 0 

12 15 0 

176 -37: 

-4 0 1 

9,” -25 
-5 8 97: -I 96: 33; 

; 0 

0 0 0 0 0 0 0 0 

0 0 0 
-8” 1 

0 0 -0 0 
-12 0 0 

-4 0 0 
92: 343 -72,” 

0 0 0 0 
-3 -200 422 27 0 -1 0 0 
-2 42: 04: 0 887 -7” 0 0 0 
-1 -263 61 -IO 564 0 0 0 

0 11 090 045 76; 90: 0 0 0 0 0 0 

: -8 753 885 251 0 -62 ‘1 774 0 -1 173 
3 -2 350 62; 180 234 -34 85: 2 042 6130 

37 -1 0 0 0 0 0 
0 

4 29: 00: 18: -53: 7: 
-5; 3 

0 
; 

0 

2 51 0 -7 2 

li -1 322 0 25: 

0 

-970 0 34 0 -; 

2 0 -2 0 0 0 0 0 

9 37 -ii 
2 0 0 0 0 0 0 0 

4 -2 1 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 
11 -1 0 0 0 0 0 0 0 0 
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2.6. Table Circular orbit. Cosine-coefficients of Aa, 

-I?1 
-10 

189 

1; 

I? 
-3 
-2 
-1 

0 

: 
3 
4 
5 
6 

L 
9 

IO 
11 

0 1 2 3 4 5 6 7-a 

-3040890 - 
2 386 433 

3 983 38: 
0 

-2 709 
0 

23 
0 
0 
0 
0 

7 
-442 
-700 

30 025 
71 948 

5 530 
,468 685 

67 ;:i 
-23 993 

-:2 
5 
4 
0 
0 
0 
0 

0 
0 
0 
0 

-2 
-12 
170 

1 253 
-9 59’ 

-134 254 
19 958 

256 216 
-19 228 

-124 618 
8 576 
1 079 

-141 
-10 

2 
0 
0 
0 
0 

0 
0 
0 
0 
1 

-6; 
-317 

3 182 
23 169 
-9 002 

-44 593 
8 782 

22 047 
-2 953 

-287 
58 

3 
-1 

0 
0 
0 
0 

0 
0 
0 
0 

-; 
11 

311 
I 085 

-I 182 
-3 241 

1 729 
3 181 

-I 138 
-I 026 

289 
-10 

-4 
0 
0 
0 

.O 
0 

0 
0 
0 
0 
0 

-A 
-60 

2:: 
-73 

-360 
7' 

238 
-36 
-61 

8 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

1: 
5 

‘5 
-11 
-29 

15 
28 

-11 
-14 

4 
3 

-1 
0 
0 
0 
0 
0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

-1 0 
0 0 
2 0 

-1 0 
-3 0 

1 0 
2 0 
0 0 

-1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

Comparison with the rough method of section 1.6.4: 

From (1,156)(1,157) one obtains 

Aa, = 3.34114.10-6E , Aoc, = -10.93105.10-6E . 

~2.7 Sixth numerical example. -of the Fourier expansion in the case of 
a circular orbit. 
2.2.7.1 Configuration: (Fig. 2.7) ---____-___---_--__-__ 
The unperturbed orbit of the particle is a circle in the x,,x, -plane; the pertur- 
bing body is as in the fifth example. IL M = 0.01, + = $ (as in the fifth exam- 

PLe). 
Elements of the particle: 01, = =$ , ot2 = - 

pa =+ 
:* ti) = 0, cd, = 0, a,=$ 

p3 = 0, p, = 0 ( co ncidlng with the reduced elements ("j)R , 1 
(Pj)R i therefore E, = 0). 

2.2.7.2 Fourier-series: -_-___-----------_----- 
In Table 2.6 the cosine-coefficients of AC+ (computed by ANPER) are listed in the 
same arrangement as in the fifth example. 

2.2.7.3 Conclusions: ---_------------_--- 
As can be seen from the two Tables u and 2.6 the convergence of the series is not - 
sensitive to the eccentricity. We have also carried out numerical. experiments with -- 
the ratio a:B = 1:g in the more classical case where the orbit of the particle is 
In the pLane of the orbit of the perturbing body. ALSO in this case the convergence 
behaviour of the Fourier-series was practically the same for an ejection orbit as 
for a circuLar orbit of the particle. 
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perturbations of the orbit qfthe planetoid Vests. The theory of 2.2.8 First-order 
the general perturbations of Vesta was estabLished in 1880 by M.G. Leveau [IO] ac- 
cording to Hansen's method. His resuLts on the first-order perturbations by Jupiter 
have been compared with the results obtained by our program ANPER (cf. [53). Since 
the set of elements used by Leveau is quite different from our regularized eLements, 
it was onLy possibLe to compare the distance of the pLanetold from the pLane of its 
initial oscubating KepLer orbit. The Fourier expansions of this distance as ob- 
tained by ANPER agreed perfectLy with Leveau's results. 
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Appendix 2.1 -- Program NUMPER. 

1: EEOlN 
RlAL TO,H,N,X1.X2.X3~VlrV2,V3,Ot4,Cl,C2,C3,NP i 
INTEWR NsNlAB,NDEG.~dFCt : BOOLEAN NEARCENTRE ; 
ARRAY ALO.BEOlIr41 ; 
FORMAT INf Y= “(22H START FAR FROM CENTRE// 

23H INtlIAL POSITION XI =,E113.10,4X,4HX2 =rEI8.10.4X,4hXS =s 
EiB.I0/23H INITIAL VELOCITY Vl =rElB.l0,4X,4HV2 =rElB.I0,4X, 
4HV3 =rElFJ.10//1.9H SEHI-HAJ’IR AXIS =.EI8.10.4X,I4HECCENTRICITY =, 
El8.10.4X~22ttPERIO~ OF REVOLUTION ‘rE18.10)” ; 

FORMAT INFNEARCENTRE := “(1Bti START NEAR CENTRE// 
23H INITIAL POSITI’IN Xl =rEl8.10,4X,4HX2 =.El8.10.4X.4hX3 a, 
E18.10/36H DIRECTION OF INITIAL VELOCITY Vi =rElS.l0~4X14kV2 =, 
ElB.l0,4x~4HV3 =.ElB.i0//9H ENERGY =.EIe.IOi/ - -~ 
1BH SENI-MAJOR AXIS =.E~~.Io,~X.I~HECCENTRICITY =aE18.10,4X, 
22YPERIOU OF REVOLllTION :,ElB.10)~’ ; 

2: PROCEDURE REGEL(NEARCE~TRE,M,X1.X2.X3.VlrVZ.V3,OM,AL,Bt~CI,C2,C3, 
f.1 ; 
VALUE N.Xl.X2,X3rVl,V2.V3 I 
REAL M.X1,X2.X3rVl,V2,V3.Ofi,CI,CZ~C3 ; ARRAY AL.Bt ; 
;;J\:AN NEARC~NTRE ; LABBL L 1 

REAL HIV : INTBGER K : 
R := SGRl(XlrXl*X2*X2+X3eX3) i 
V := SPRT(V~*V~*V~+V~+V~*V~J ; 
IF - NEAHCENTRE THEN 
BEGIN 

OH := H/H/2-\l*V/4 : 
IF Or450 THEN GOT0 L L 
OH := SPRT(OY) I 

END I -..- 
If Hi0 n Xl?0 THEN 
BEGIN 

AL{11 := SGRT((R+Xl)/2) ; ALI 
AL131 := X3*ALIiI/(R*XI) I AL 

END 
ELSE If R#O 

BEOIN 
AL121 := SGRT((R-X1)/2) : ALI 

21 :n 
,141 I 

THEN 

1) := 

x2*AL.I1J/(R+XlJ I 
0 ; 

X2*AL12J/(R-X1) J 
AL141 := X3+AL121/(9-Xl) I ALL.51 := 0 i 

END 
ELSE 

AL111 := AL121 :: AL[31 := AL141 :a 0 i 
If HfO THEN 
BEQIN 

QEill := ( AL[lJ+Vl+ALt2J~V2*ALl3J*V3J/O~/2 i 
et121 := ~-ALl21~J1*ALI~1.V2*ALorY3)/0r/2 : 
Btl.51 := (-A!,[3I*Vl-ALI4I~V2+ALlll*V3~/OM/2 : 
BE141 := ( ALt4I*Vl-ALI3I~V2*ALI2l~V3~/OH/2 i 
IF htARCENTRE THEN 
BEGIN 

REAL VC ; 
VC := 2*M/R-4*JH*O.q I 
1F vC<O THEN QOTO L i 
VC := SGRT(VC) ; 
FOR I(:=1 STBP I UNTIL 4 DO Bttlcl := ttE[KJ/v*vC ; 

END ; 
END- 

ELSE If Vl?O THEN 
BEGIN 

Eklll := SGRT((V+JlJ+i/VJ/OH/L I ijEt := V2*BtllJ/(V*VlJ J 
et131 := V3*?EtiJ/(V+VI) I dE(4J :* 0 ; 

END 
ILSE 
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BEQIN 
Btl-21 := SGRT((V-vl)rn/V)/OH/2 1 BEIll := VZ*GET21/(V-Vl) I 
ED141 :a waET2T/(v-vi) I DE131 I* 0 ; 

END I 
Cl := AL~l~*ALI11*AL~2l~ALI2)+ALo+AL131*ALI4l~AL~4~ 1 
C2 := BEI11*aE111*GEI2lrGEl2J+~E~3l+BE131+8EI4~~B~~41 ; 
Cl := (cl*c2)/2 : 
C2:rc1-C21 

:= ALI1I+aEI1I+ALt2lrGE121+AL~3]~EEl3l*AL[4~~Bt~4~ 1 
END%i~L i 

3: FEAD(N,NEAHCEMTREmtO) ; 
IF N=lO TH6N OUTPUT(51,“(26HlREGlJLARlZATlON DT = R+DS////)“) 

ELBE OUTPUT~5l,“~15HlREGULARIZAlION~2X~ 
POHDT = SGRT(A/AO)‘R*DS////)“) i 

IF NEARCENTRE 1HEN 
WGIN 

READ(H) ; 
IF H>O THEN QOTO INERROR 8 
OFl := SGRl(-H/2) I 

END : 
CUTPUT(51,“.(5H TO ',fl8.lO////)",TO) ; 
READ~H.XI~X~,X~~V~,V~~V~~ ; 
CUTPUT(Sl,“(l3H CEMTRAL MASS//4Y H rrEl8.lO////)"rtl) ; 
FEGEL~l~EAACE~TRE,~,Xl~X2,X3rVirV2,V3,OH~ALO,GEO.Cl~C2,C3~I~tRROR~ ; 
CUTPUT(51.“(1OH SATELLITE/)“) ; 
IF NEARCENTRE THEN 
tUTPUT~5lrINF~EARCENTRE,Xl,X2,X3,Vl,V2,V~~H,Cl~SQRT~C2~2*C3*2~/Cl, 

3.1415926536+Cl/OH) 
ELSE 

CUTPUT~5lrlNF.XlrX2rX3rVI,Vl,V2~V3,Cl,S9RT~C2*2*C3*2~/Cl~ 
3,~415926566*Cl/Ofl) ; 

EEAD(HP,NTAB) i 
CUTPUT(51,“(////16H PERTURBING YASS//4H M ~,Elfi.lO/)“rMP~ I 
IF kTAB#O THEN REAOtNIlEG) &SE MDtG :a 0 ; 
KFCT := 3 i 

4: SBGIN 
REAL XP1,XP2rXP3.VP1.VP2.VP3,OMP,CPl,CP2,CP3,TGEG,DlTAB,TFL, 

DS,TMAX,S.CS,SN.T,R,VF ; 
INTEGER I,NOUT,NOUTI : 
ARRAY ALP,BEPI1:41,TAG~1:NfCT,O:NTAE~,LAMIO:~OEGl,DELll:h~, 

FCT(1:NFCTl.AL,9E,U.DUDSllr41 I 

PROCEDURE LAINTAB(T,FCT) I 
VALUE T 1 REAL T ; ARRAY FCT i 
COMMENT GLOBAL: NDEO,NFCT.NTAG.TaEG,DTTAE.LAMlO:NDEGl, 

TA8~1:NfCT,D:NTABlrOUt I 
BEQIN 

INTfiQER N,L.I,J ; ABAL P,K.SS I 
ARRAY SII:NfCTlr~YIO:NOEGl ; 
i :* (T-TaEG)/oiTAii N := p ; I( :, NDEG/2 ) 

L := N-K+(K-ENTIER(K))~SIGN(P-N) 1 
IF L<O ” L*qDEG>:JTAB THEN GOT0 OUT ; 
IF P=N THEN 
FOR I:=lELi:EP 1 UHt[L MFCT DO FCTIll := TAGTI,MJ 

BEOIN 
FOR I:31 STEP 1 UNTIL NFCT DO ST11 := II 8 
ss := 0 I 
FOR J:=O STEP 1 UNTIL NUEG DO 
BEGIN 

MY(Jl := LAAfJI/(P-L-J) ; 
FOR 1:-l STEP 1 UNTIL NFCT GO 
Sill := SIII*MYIJI~TAOII,L*J~ ; 
SS t= SS+MYIJI 1 

END I 
fOR I:=1 STEP 1 UNTIL NCCT NO FCTTII :r sTTT/SS 1 

END * 
END LAlhAL) I 
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5: PROCEDURE- RKlST(X,Y,N.M.f) i 
VALUE N,H r REAL X.H I INTEGER N I 
ARRAY. Y ; PROCEDURE f I 
DEOIN 

REAL XI : INTEOER K,J i ARRAY YlrY2~Zll:HlrAIll5l I 
All) := A121 := A151 := H/2 ; AI31 := A141 I= H I 
x1 := x I 
FOR K:=l STEP 1 UNTIL N DO YlIKl := Y21Kl :* Y1K1 ; 
FOR J:=l STEP 1 UNTIL 4 DO 
EEOlN 

F(XI.Y2,N,t) I 
:= X+AIJI 

:;R K:nl STLP 1 UNTIL N DO 
BEQIN 

Y21K1 := YlKl*AlJI*ZIKI ; 
YlIKl := YlIKl+AlJ*ll*ZtK1/3 ; 

6ND I 
END- i 
x := X*H ; 
FOR K:=l STEP 1 UNTIL N DO Y’IKI := Yl[KI ; 

ENU RKlST i 

6: 

7: 

8: 

9: 

PROCEDURE F (S,DELvN,G) ; 
VALUE S,N : REAL S : INTEGCR N I ARRAY 0EL.G 8 
COHHENT GLOBAL: TO.~~~,C~.C~.C~.NTAB,CP~~CP~.CP~,CP~~ALP,~IEF, 

AL’JIBEO.LAINTAG ) 
BEGIN 

REA~UHCS.SN.T.XP1.XP2,XP3.R,Xl,X2,X3,DENl,DE~2~Pl,p2,P3, 
. INTEG@R I : ARRAY AL.GE.U.DUDS,Cl1:41 I 

T :* TO~C1~S+C2~SIN~2’0~~S~,O~,~*C3+(1-COS~2~O~~S~~~~“,2 
*DELI91 I 

IF NTAM=O THEN 
DEQIN 

REAL SP,SPl ; ARRAY uPll:41 ; 
SPl :’ (T-TO)/:Pl-CP3/CPl/OMP/2 I 
LOOP: SP := SP1-~CPl~SP1*CP2~Slh~2*OHP~SPl~/OMP/2*Cp3~ 

~~-COS~~~OHP’SP~~~/OMP/Z-T+TO~/~CP~*CP~*COS~~~C~P~SP~~ 
+Cp3*SIN(2*3MP*SPl)) I 

IF ABStSP-SPl)>u-9/OMP/2 THEN 
BEGIN SPl :a SP I @OTO LOOP END ; 
Cs := CoS(OMP*SP) , SN :+ SIN(oMp+Sp) ; 
FOR I:=1 STEP 1 UNTIL 4 DO 
UPI II := ALPIII+CS+GEPIIl+SN i 
XPl := UPI1l~UPI1I-UPI21’UPlZ~-UP~~~~UPl3l~UPl4~*~Pl4J I 
XP2 :’ 2*~UPIll+UP121-UPl31’UPo) ; 
XP3 := 2+~UPlll~UP131+UP121rUPo~ i 

END 
ELSE 

BEGIN 
LAINTAGtT.fCT) ; 
XPl := FCT111 ; XP2 I= FCTl21 1 XP3 := FCTIJI I 

END ; 
CS := COS(OH*S) ; SN :a SIN(On+b) I 
FOR I :=1 STEP 1 UNTIL 4 DO 
BEGIN 

ALL11 := ALGIII+DELIII : EtIIl := GEOIIl+LELI1+41 I 
UC11 I= ALtII+CS*GElI1+SN : 
UUDSIII := OH+(-AL[Il+SN+BtLIl~CS) ; 

END * 
R := ;Ill+Ulll*Ut21~UI21+~~~,*U,3~+U~4,~~~4, i 
Xl a= UI11~U11I~UI21rUI2I-U~31~Ul3~*Ul41~Ul41 i 
X2 := 2+~UIlI~U121-U13I~UI41) ; 
X3 := 2*~Ulll~Ul3~*Ul21~UI41~ i 
DEN1 := ((X~-XP~)*(X~-XP~)*~X~-XP~)~(X~-XP~)+(X~-~P~~ 

l (X3-XP3))?1.5 : 
DkN2 :I. (XPl+XPl+XP2*XP2+XP3rxPJ)rl.5 i 
P1 := -~P~~~Yl-XPl~/DEYl*XPl/~EN2~ ; 
PZ := -MP+((X~-XP~)/GEY~*XP~/~IEN~~ i 
P3 := -nP~((X3”XP3)/~ENl*Xp~/~EN2~ I 

73 



10: 

QIll := 2+[ ~[II~P1+U[2I~P2*U13J+PJ~ 1 
0121 := ~c[-UI~I*P~+UIII+P~+U~~~'P~~ I 
0131 := 2+[-U[3I*P1-U[4I*P2+ll[lI*P3) i 
Ql41,:= 2*[ :J[4[*PI-Ul31+P2+Ul2['p3) i 
SUM := Q~I!*~UDSI~I*QI~I*~UDS[~~*Q~~I+DUDS~~I*Q~~I~D~DS~~[ I 
IF N=IO THEN 
BEQIN 

REAL DAL~,DEE~.OALBE,DR I 
FOR I:=1 STEP I UNTIL 4 DO 
BEGIN 

GIIl := [R~O[I1*2+DELI1OI~UIII~~OM/4 I 

11: 

Gl1+4[ := GIII+CS i 
Glll := -QIII*SN I 

END I 
DAL2 := [~~ALO~I~+OEL[~I~~UELI~[*[~*ALO[~~*~EL~~I~~UEL~~I 

*~2*ALOI3I+DELl31~~DELl~l*~2+ALOI41*D~~t4~~~~~Ll4~ ; 
DEEP := [2~EEO~ll*OELI51~'3EL(51+(2CBEOI2l*DELI6I~~DELI6l 

+[~+BE~[~~+~EL[~I~+DEL~~~*[~~BEOI~)*DEL[~I~~UEL~~~ i 
DALBE := ALOI~I+DEL~~I+BEO~~I+OEL(~~*DEL~~I*DEL~~~ 

+AL0[21*DELI61*8E0[21*DELl21*DEL121+0EL16[ 
+AL0[31+DELI71+BED[3l*DELl3I+DELI3)+0ELl7I 
+AL0[41+DELt81+BE014I+DtiLl4[*DEL141*DEL[81 I 

DH := [DAL2+DBE2)/2+[OAL2-UB~2)/2~COS(2rOrrS) 
+DALBE*SIN[2+0H*SI I 

G[91 := 09 I 
GLlOl := SUM ; 

0NO 
ELSE 

BEQIN 
REAL A ; 
A := [ALl11*AL[11+AL[21*AL121+AL[31*AL[3[+AL[4I*AL[41 

+Bf[ll*flE[l~+BEl2lrBE[2l*BEl3l~BEl3l*BEI4l~B~l4l~/2 i 
FOR I:=1 STEP I UNTIL 4 00 
BEGIN 

GIII := A/Clc[R~~[Il+UUUS[II+Sun/on/on~/on/4 I 
GlI+41 := GIII*CS i 
GlIl := -QtIl*SN ; 

END I 
GIYI := SQRT[A/C1)~4~[Cl*C2~COS[2~DH~S~*C3+SIN(2~CM~S~~ I 

RN0 i 
END F ; 

12: IF NTA~~=IJ THEN 
DEQIN 

READ(XP1,XP2,XP3,VP1,VP3) I 
REGEL[ FALSE ,~I+YP,xPI,xP~,xP~,~PI,~P~,~P~,~~IP,ALP~BEIJ~ 

CPl,CP2,CP3rIIiEARJR) I 
DUTPUT[~~.INF,X~~,XP~.XP~,VP~~VP~~VP~,VP~,CP~,SDRT[CP~~~+CP~*~~/ 

CPl,J.I415926536rCPl/DHPI i 
END 

ELSS ---- 
SEQIN 

READ[TBEG,DTTAB,TFLI I 
FOR It’0 STEP 1 UNTIL NTAB DO 
READ[~ABlIrIlrfA!3I2rIl,TABl3,IlI ; 
OUTPUI[51,"[7H NDEG =,13//10X,1~T,17X.2HX1,18X.2nX2,1~X~ 

2HXJ/)"mNDE31 I .-- 
FOR- I:=0 STEP 1. UNTIL NTAtl DO 
BEQIN 

TAdll.11 := TFL+TA9[1.11 ; 
TA8l2.11 :a TFL*TAB[2,II ; 
T~d[3.1[ :a TFL*TAI~I~,II I 
OUTPUT[51,"~1X,E~8.8,3E2O.lO~",T8EG~I~DTTAB, 

TA~ll,Il.TABl2.Il.TA8[3.1)~ I 
END i 
LAHIOI := 1 ; 
FOR I:=0 STEP 1 UNTIL NfEG-1 DO 
LAMtl+ll := -LA'4[II'~NOE~~-l~/[l*~~ : 

END 8 
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13: 

14: 

READ(DS.NOUl,TMAXl : 
OUTPUT(51,“(////22H INTEGRATIDN STtP DS =.ElB,10/7H NOLI =,14/ 

~H~,~OX,~HTI~~X.~HX~~X~,X~,~~X,~~VI~V~~V~~~~X~~~ALPHA~I~X~ 
4HEETA/l”,DS,N3UTl : 

s := 0 ; 
FOR I:=1 STEP I UNTIL h( DO DtLlII := 0 ; 
TR3: 

(2’0tl*S)1/Ut!/2+DELl91 ; T := To*C~~S+C~~SI:~~~+~~+S)/OY/~+C~~(~-COS 
CS := CUS(Otl+S) I SN := Sl;((OY+S) ; 
FOR I:=1 STEP I UNTIL 4 DO 
DEQIN 

AL111 := ALOIIl+DELIII ; BE111 := tiEal1 
UIII :a ALIIl*CS+BEIII*S!~ I 
DUDS( 11 := OH*~-AL~II+SN+EEIII~CS~ ; 

END : 

l+UELII*41 1 

R := UIil+U[II+UI2l*UI21*iJI3l*Ul3l+UI4l*bI4l ; 
Xl := Ul11*Ut11-Ul21*UI21-UI31*UI41 : 
X2 := 2*(Ulll*U[21-U[31+UI41) I 
X3 := 2;$ll~l;U~3l*Ul21*UI4l~ : 
VF := THEN 1 ELSE IF NglO THEN 2/R ELSE 

2/R/SQRT~~ALIll~AL~1l+ALI2l+ALI2,*ALI3l~ALl3l*ALl~l~A~l4, 
+BEIll+BEIll+BEl21~B~~2l+BEl3l~BEl~l*Bt~4l~BEl4ll/2/Cll I 

Vl := VF~~UlIl~DUDSl11-~I2l~D~DS~Zl-Ul3l~DUDSI3l*Ul4l~DLUSI4l~ ; 
V2 := VF~~ULllfDUDS~21+.1I2l+aUDS~ll-UI3l~DUUS~4l-Ul4l~DLUSl3ll ; 
V3 := VC+~U~1l~DUD~~31+JI2l~D~DS~4l+Ul3l+DUOS~ll*Ul4l~OLDSl2ll : 
IF N=9 THEN 
0UTPUT~51,“~/5E20.10/20X,4E20.10/2UX,4E20.10/60X,2E~0.101”, 

T,Xl.V1,ALlllrBEl11.X2.V2.ALI2I.~E12lrX3rV3.AL131.8E(J1. 
ALl41,BE141) 

ELSE 
0UTPUT~51.“~/6E20.10/20X.5E20.10/2~X,4t20,10/60X,2E20.1~~”~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~2+AL0~11+DELt11~~DELI11*~2+AL0I21+DtL1211*DELl21+~2*AL0131 
*DELL31~~DEL[31*~2~AL0~41*0EL[41~*UELl41+~2~BE0~11+0EL1511* 
SEL151+~2+BE0121+DEL~61)*DE;16)+~2+BE0(3l*D~LI71~*DEL~7l*~2~ 
BE0~41*DELl811~3EL1811,X3,V3,ALl51,B~l~1,A~l41,BE~411 ; 

IF R=O THEN 
OUTPUT(Sl,“( 

57H (COLLISION, VI.V2,V3 IS THE UIRECTION OF THt VELGCIIY)) 
‘1) : 

NOUTI := 0 ; 
INT: 
~~~;;(S,~tL.N,US.F~ i 

:= NOUlI+l ; 
IF T<THAX THEN 
BEQIN 

IF NOUTI-NOUT THEN QOTO TR3 6LSE GOT0 IN1 ; 
END 

ELSE QOTO EVDOFPR ; 
END ) 

15: INtRR;)R: WrPU1(51."(20H ERROP IN INPUT DATA)“) ; CD10 thCUkPR : 
CUT; OUTPUT(51,“(23H TABLE NOT LARGE ENUUGh)“) : 

ENOCFPR: END ; 
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Appendix 2.2. Output of program NUMPER. First example. 

REGULALIZATIO~ CT = R.oS 

CGhfRAL 11115s 

c a 2.P65621CS30E 15 

SATELLITE 

START h6.R CEhTHE 

INfrIlL POSITlON Xl = 1."""00"0"106 0, x1 . 0 x.l . 
CIRECTICN OF INlTIAL "ELOC,," 

0 
"1 2 0 "1 = 0 "3 * 1.0000000000E 00 

ENERGY = -1.OOO"O"OO"Of 1" 

PERTURGING MASS 

I = 3.63?460.S520F 

hOE0 = 6 

5.“0”0”“““E-01 
l.""OOOO"OE 0" 
1.~0000000' 0" 
2.P"0"0""0E "0 
2.50000000E 0" 
3*~"""0"00E 0" 
J.'"O""""OE 0" 
4.'""O"O""E 0" 
4.50000000E "0 
5."0"0"0""E "0 
5.=""00""0E 0" 
6.""""0"""E 0" 
6,5""0"""0E 00 
7,""0"0"0"E 0" 
7.5""""""OE 00 
0.n""0""00E 0" 
0.~0""""0"E "0 
P.""00""00F 0" 
P.~““O”“O”E “0 
1.““0”0~““F 01 
1.F500”“0”E 01 
1.1”“00”0”E 01 
1.15000000E 01 
l.i”0”00”0E 01 
l.F5”O”“O”E 01 
1..~“0”0”0”E 01 

13 

XI 

1.9809297145E "5 
1.5671343A715 "5 
1.12981"1"15~ "5 
6.7444433387F "4 
1.0828555217E 0, 

-7.51302*6595F "4 
-7.?672"62464~ "4 
-1.109sm9~ ;5 
-1.61469"35"1' "5 
-2."22,1924651 05 
-2.5979272510' 05 
-2.7345631254' "5 
-3.0277291166' 05 
-3.2734641413i "5 
-3.465,S"8"2"< "5 
-3.6116616965E "5 
-3.70102A54301 05 
-3,,3668R""77~ 05 
-3.71926"59"6c "5 
-3.653096Pn47" 05 
-3.3312018419F "5 
-3.66515365"lC "5 
-3.1550162R141: "5 
-Z.9”4?011491E “5 
-2.hl6,88817Rr- "5 
-2.7966,6"460= "5 
-1.9485167742' "5 
-1.57627"36"6= 05 
-1.105z373107E 05 
-7.0001123993~ "4 
-3.0543945,42= "4 

5.3619751314E "3 
4.7233529675E 04 

,HTEGRbTIOV STEP OS = 9.9999999999&-"7 
hOLT = 1 

T Xl,X?#X3 

0 L.00”0”0”“0if “4 

: 

1.0.60476110~~-02 8.5196564167E "3 
-1,1264PPP675~-"4 

7.5452977411G "3 

2.3F,P7,2422t--"7 4.lJSIQl"l7~F 03 
2.83,6,0"31?F-". 
1.4939919542F "4 

YZ 

2.6.94P105417E 05 
3."57044$45E 05 
3.1771274104E 05 
3.245"251A"SE 05 
3.1650449208E 05 
5.234RP21755E 05 
3.151R757452E 05 
3.0179413599E 05 
2.835179993GE 05 
2.6"6*435?.r,E 05 
2.31670029526 05 
2."98,94236"E 05 
1.6994927574E 05 
1.374t25.3,I.E 05 
9.39,7146n"7E 04 
5.3143171774E 04 
1.3~30447Lll0E 04 

-2.763P494525E 04 
-6.5115051'746E 04 
-l.",0370642,E 05 
-1.4569969756E 05 
-1.R~S303495lE 05 
-2,156"1477,1E 05 
-2.4563056J2,E 05 
-2.745rO65249E 05 
-2.99jL13"/05E 05 
-3.2,1~0Jln11E 05 
-3.377~356403E 05 
-3.514,4675415 05 
-3.5959425472E 05 
-3.6457952H72E 05 
-3.6541120406E 05 
-3.6211233575E 05 

YI."Z*"J 

0 
" 

,.57"497/812E "5 

-?.5972"15213f 05 
-q.WP78066596-03 

*.iFlS750.S54G 05 

-3.7771411557E 05 
*.65180384376-02 
4.6917968983.G 05 

x3 

1.1473066S2PE 05 
1.2652534907E 05 
1.3640116991E 05 
1.4416632561E 05 
1.496697695"E 05 
1.5276764309E 05 
1.534484292iE 05 
1.5162675269E 05 
,.47?4699536E "5 _. 
1.40CBZS4392E 05 
1.31,54844,7E 05 
~.20,2590646E 05 
1.0779545139E 05 
9.3152588785E 04 
7.716004371.E 04 
5.PPP0900672E 04 
4.lP34034149E 04 
2.327566.5301E 04 
4.29130S2915E 03 

-1.4751815204E "4 
-3.3596171797E 04 
-5.1957675864.5 04 
-6.972742867SE 04 
-6.6573450416E 04 
-1.02141539SOE 05 
-1.1685628"1.9E 05 
-1.2956154260E 05 
-1.4152083600E 05 
-1.5141764563E 05 
-1.595556894SE 05 
-1.65G5067290E 05 
-1.7027071226E 05 
-1.72755S6142E 05 

ALPCA SET. 

l.O"o0000OOOE 02 0 0 
i 5.3531503163E 02 0 0 

0 0 

I.00"00002,2E "2 -6.4986S2"425E-05 -1.7408365416E 0.0 
-7.75653571P?E-OS -6.727HRi532E-06 -1.74ORZJ6234E 00 

6.14789RG57fG-07 5.3531501509F 02 
6.36015426i9E-oS -4.1521SW746E-07 

1.000000l471E 02 -1,7635229444E-04 -4.334748341"E OS 
-,.65,516637PE-"6 5.88,426651SE-05 -4.3.1473OPllOG 08 _.~ -_. _. 

3.55237314441-06 5;3531496G%SE 02 
4.1.5729252226-06 -4.o992215733E-05 
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Appendix 2.3. Program ANPER. 

EEOIN 

PROCGDURE PF~H,NS,E~E~.ALO.~EO.~O.EXZO,ALS,EESIISIE~ZSDF~ I 
VALUE H,NS,t,ElrAO,EYZO,AS.EXZS ; 
REAL H,MS,E,E1. AO.EXZO,AS.EXtS I 
ARRAY ALO.dt0,ALS.GES.F i 
16GIN 

REAL ES.~SA,XS,YS.ZS,R,X,Y,Z,DVDX,~VUY.DVDZ.SUM,H~H~DS,HS~N I 
INTEGER L ; 
ARRAY U,lJS,DUDE,OvDUI1:41 I 
H := El-~XZU~SQRT~~H*HS~/M~.~AO/AS~~l,5~S~~~~~ ; 
ESA := n ; 
LOOP: ES I= ESA-(ESA-EXZS+SI~(ESA)-~)/(l-~XZSICOS(ESA)) ; 

IF AdS(tS-ESA) > m-9 THEN 
BEGIN ESA := ES ; OOTO LOOP END ; 

HCOS := COStES/2) : HS1.J :a SIN(ES/L) ; 
FOR L:=l STEP 1 UNTIL 4 DO 
USILl := ALS[LI*HCOS*BESILI*YSIN I 
XS := US111+USI11-USl21+US[21-USoSUSI3)+vsI41*US141 ; 
YS := 2*~USlllfUS[2l-USI3l*iJS~41) ; 
ZS := 2*~USlll~USl31+US~21~JSl41~ ; 
HCOS := COS(E/P) 2 HSIN := SIY(E/Z) : 
FOR L:=l STEP 1 UNTIL 4 DO 
BEOIN 

UILI :a ALOLLI*HCOS+dEOILl+HSIM ; 
DUDEILI := -ALO~Ll/2*HSIY*REOlLl/2*HCOS ; 

END ; 
R := UI1l+UI11*UI21+UI’I+U[3l~U[3~+U~4~~Ul4l ; 
X := Ulll.Ulll-UI21~Uf21-UI3l~U[3l+Ul4l~U~4l i 
Y := 2~~Ulll~Ul2l-J131’~Jl4ll I 
2 := 2~~Ulll~U~31+~121fJ:41~ I 
H := ((X-XS)+(X-XS)+(Y-~$)+(Y-YS)+(Z-ZS)~(Z-ZS))Tl.5 ; 
DVDX := (X-XS)/H ; DVDY := (Y-YS)/H : DVDZ := (Z-ZS)/H I 
H := (XS*XS+YS+YS*ZS*ZS)tl,S 1 
DVDX := -HS*(DVDX+XS/H) I 
DVDY := -HS*(DVDY*YS/H) i 
DVDZ := -MS+(DVDZ+ZS/Y) : 
DVDUIll := 2*( UI~~~DVO~*U(~~+CVDY~UI~I~DVDZ~ : 
DVDUIZI := L+~-U~21*DVDx*UI11~DVDY+Ul4l~DvDZ~ ; 
DVDUt31 := ~*(-IJ~~~+DVDX-U~~~*DVDY+U~~~+DVDL) ; 
DVDUI41 := 2*( UI~I+DVDX-UI~I~DVDY+U~~~*DVDZ) ; 
SUM := ~VDUI11~DUDEIlI~DVDUl2l~~U~~l2l+DVDUo+UUDE~~l 

l DVDIJI~I*DUUE~~I ; 
FOR L:=l STEP 1 UNTIL 4 DO 
BEQIN 

FlLl := AO/M/2+(R*DVilUIL]*4~DUDE[Ll*SUH) ; 
FIL*41 := FILl*qCOS ; 
F[L] := -F tLl*HSIN ; 

END : 
END PF : 

PROCEDURE PD~9DDtLAN(H.4LO,REO,AO,EXZO,I,Df9DDELANsJKMAX~ I 
VALUE HM,;O;;;;O,I,JK’lAX : 
R0AL . ’ INTEGER l,JKYAX I 
ARRAY :LO.dEO.DhDDELAN ; 
DeGIN 

REAL YSdrAUSQ : 
INTEGER J,K ; 
MSQ := SORT(H) ; AOSQ := SQQT(AO) : 
FOR J:=O STEP 1 UNTIL JK’!AX-1 DO 
ROR K:=-(JKMAX-1) STEP 1 UNTIL JKHAX-1 DO 
BEOIN ~JFYDOELANIJ~KI~I := 0 I OFYDUELAN[J,K,ZI := 0 END ; 
DF9DDELANl0,O.Z) := AOS)/‘lSJ*( IF Is4 THEN ALOIII ELSE 

~tUIl-41)*AOSQ/iSQ/2.( IF 164 THEN ALU111 ELSE EtOll-41) I 
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DFPDDELANIl,O,ll := (AOSo/HSQ*( If 164 THEN ALOIII :ELSE 
-BEOI1-41~-EX20'AOSO/~iSO/Z~f If 154 THEN ALOIII :Ei.QE 
BEOIl-41))/2 I 

DF9DDELAKL1,0,21 := -(AOSO/NSO+( If 154 THEN BE0111 ELSE 
ALOII-41))/2 ; 

END PDFPDlJtLAN ; 

RROCEDURQ DFUURAN(JKHAX.F,A) ; 
VALUE JKYAX ; INTEOER JKMAX : ARRAY F,A ; 
BEGIN 

PROCEDURE SFUURAN(JRAX,F,A) I 
VALUE JMAX : INTEGER JMAX 8 ARRAY FDA i 
EEQIN 

INTEGER J.NvJNHOO2JMAX ; 
ARRAY COSAR?AY,SINARRAYtO:2+JHAX-11 t 
FOR J:=O STEP 1 UNTIL JHAX-1 DO 
BEQIN 

COSARAAYIJI f- COSf3.14159L6536/JHAX~J) i 
SINARHAYIJ~ J= SIii3:i4lS926536/JMAX*J) i 
COSARRAYIJ+JMAXI :a -COSARHAYIJl : 
SINAR~~AY~J+~~AX~ :3 -S~NARRAYIJI ; 

END ; 
AIU.11 := 0 J 
FOR N:=O STEP 1 UNTIL 2*JflAX-1 DO 
AlO := AIO;lI+F[N: ;-- 
AIlJ,ZI := 0 : 
FOR J:=l STEP 1 UNTIL JMAX-1 DO 
BEQIN 

AtJ.11 := 0 : AIJ.21 := 0 i 
fOR N:=O STEP 1 UNTIL Z*JMAX-1 DO 
BEBIN 

JNMOD2JtlAX := J~~-E~TIEH(J’N/(2’JMAX))~2*JMAX i 
AIJ.ll := A~J.1I*FlNI+CUSARRAYlJMMO~2Jt’AX~ 1 
AIJ,21 := AlJ.21-FlNI+SINAHRAYlJMHOD2Jt’AXl I 

END : 
END ; 
FOR J:=O STEP 1 UNTIL JMAX-1 DO 
QEQIN 

AtJ.11 := AtJnlI/Z/JMAX I 
AIJ.21 := AlJ.Z1/2/JMAX I 

END ; 
END 5t O’JRAN ; 

INTEQER J,K ; ARRAY AllO:JKhAX-1,1:2lrFI~O:2*JK~AXl ; 
COR K:=Il STEP 1 UNTIL 2+JKMAX DO 
BEQIN 

FOR J:=O STEP 1 UNTIL 2*JKMAX DO FIIJI := t[J,K, i 
SFOUHAN(JKHAX,FI,AI) ; 
FOR JI=U STEP 1 UNTIL JKMAX-1 DO 
QEQIN 

FIJ.K(I := AIl~.ll : 
FIJ+JKflAX.KI := AIIJ,21 ; 

END i 
END : 
;;iINJ:=O STEP 1 UNTIL JKMAX-1 DO 

-FOR K:=d STEP 1 UNTIL P*JKMAX DO FIIKI 8= ~IJ,K~ ; 
SFOUHAN(JKMAX,FI.AI) i 
FOR K:=O STEP 1 UNTIL JKflAX-1 DO 
BEQIN 

FLJIKI := AIlK, i 
FlJ,K+JKHAXI := AIIK.21 : 

END : 
FOR K:=O STEP 1 UNTIL 2eJKMAX DO FIIKI := tIJ*JKPAX,Kll 
SFOUHAN(JKMAX~FI.AI) ; 
FOR K.-O 
BEGIN ‘- 

STEP 1 UNTIL JKMAX-1 DO 

FlJ*JKMAX,Kl := AIIK,ll J 
FlJ*.JKHAX,K*JKMAXI :a AIlK, ; 

END : 
END i 
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COR J:=O STEP 1 UNTIL JKHAX-1 DO 
;;;INK:'O STEP 1 UNTIL JKYAX-1 DO 

AIJ.K.$l J= F[J~KI~F[J*JKN4X,K*JKnAXl ; 
A[J,Ka21 [a FIJ.K+JK~MAXl+F[J+JKHAX,KI I 
AIJ. -K,ll :* F[J.KI*F[J+JKMAX,K*JKHAXl [ 
A[J,-K,Pi := -F[J,K+JKMAX~+F[J+JKHAX,KI ; 

END I 
END DFOURAH i 

PROCEDURE DFOUHINT(JKMAX.A,C.D.XO) : 
VALUE JKHAX,C,D,xO 1 INTEQER JKflAX ; RIAL C,D I ARRlY A I 
8EGIN 

COMMENT INTdSUM[AIJ.K.1l*I~AIJ,K,2l~rEtl~JX*K(DX*C~~~ =J 
A[~,O,~~+~X-XO~+SUH~A[J,~,~[+IIIIJIKI~~~~E~~~JX*K[DX*C~~~ I 

INTEQER JoK ; RlAL H,HCOS,4SIN : 
COR J:=O STEP 1 UNTIL JKMAX-1 DO 
fOR K:=-[JKHAX-1) STEP 1 UNTIL JKHAX-1 DO 
If JZO - K#O THEN 

B&GIN 
H := AIJ.K,2I/(.I+K+D) J 
AIJ,K,Pl := -AIJ.K.lI/(J+K*D) I 
AIJ,K,ll := H ; 

END 
ELSE 

A[O,O,21 := A[O,O,ll J 
AlO;O,lJ := 0 f 
HCDS := COS(JIXO+K+[DIXO+C)) 1 HSIN 1s SIN(J+XO+K*(D*XO*C)) I 
POR J:=O STEP 1 UNTIL JKWAX-1 DO 
rOR K:=-(JKMAX-1) STEP 1 UNTlL JKHAX-1 DO 
AI0.0111 := AlO.O.ll-1 IF JZO THEN 2 ELSE If J=O-KLO THEN 

1 ELSE O~~~A[.J.K,ll~HCOS-AtJ~K,2J*HSiN~ ; 
END DFOURINT ; 

PROCEDURE DFOURPRODSP[JKHAX,A.B,C) : 
INTEGER JKHAX I ARRAY A,B.C J 
BEQIN COHRENT SUH(AIJ,K,lI*IcA[J~K~2l~'E*I~Jx*KY) 

l ~~Bt-l;O.ll*I+Bl-l.O,2l~~E~-IX + 810,0.11 l (BIl.O#ll 
+I*BIlr0~21)+E*IX) =: SUH[C[J,K,lI+I'CIJ,K,2l~*Q~I[JX*KY~ 1 
INTEQER JpK ; 
;E;[NK:=-[JKHAX-l) STEP 1 UNTIL JKHAX-I DO 

C[O.K.lJ := A~1.K,llrEIl,D,ll*All,K.2l~~ll,O~2l 
+AIO~K,11*BIO,O,l~*AI1.-K.ll*~~l~O~ll~Afl~-K~2l*~~l~O~2l ; 

CIO.Kv21 := -AI1.K,1I+Etlr0,21*All~K,2l*B~l~O,ll 
~A~O,K,21~BIO,O,ll+A~l,-K,ll~~Il~O~2l-All~-K~2l*~ll~O,ll ; 

FOR J:=l STEP 1 UNTIL JKMAX-2 DO 
EEQIN 

ClJ~Kell := A~J+l.K,~l~Bllr0~1l*A~J*l~K~2l*~Il~O~2~ 
+A~J,K.ll+EIO.O.1l+AlJ-l~K,ll*~ll,O~ll 
-AIJ-1.K~21*Elll,0,21 ; 

C[J,K,Pl := -AIJ+1.K.11~BI1.0,21*AtJ+lrK.21+8lirO.ll~O,ll 
l A[J,K,2l+SlO,O;il~;iJ-;rKI11+B(irO,ZI 
l AIJ-~DK,~I*~I~,O.~I I 

END ; 
cIJKt~Ax-i.K~il := AIJKMAX-l,K.lI+B[O,O.ll*AIJKHAX-2rK,II 

l El[l,0,11-AIJKMAX-2,K,2l+~tl~U,2l I 
CIJKHAX-lrK.e21 := A[JKHAX-1.K~2l*SIO,O,ll*AlJKHAx-2,K~ll 

rEl1.0,2l+AIJKMAX-2.K,2l+D[l~O,ll I 
IND I 

END DFOURHHODSP I 
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FROC@DURR DFOUREV(X,XO,JKMAX,A,C,D,AEV) i 
VALUE X,XOIJKMAX~C,D ; 
RBAL X,XO,C,D,AEV I INTEQER JKHAX : hRRAT A : 
ERGIN 

INtEQER J,K i 
AEV := Al0.0,11+410.0,21+(X-X0) ; 
FOR K:=l STEP 1 UNTIL JKYAX-1 DO 
AE.V := AEV+2’AiO,K,lI~C~S~K1(D+X*C~~-2~A~O,K,21~SI~~K~~C~X*C~~ ; 
ROR J:=l STEP 1 UNTIL JKMAX-1 DO 
COR K:=-(JKHAX-1) STEP 1 UNTIL JKMAX-1 DO 
AEV := AEV+2+AIJ,K,1l+COS(J~X*K~(D+X*C))-2,AIJIK,2l~SIN(J~X 

l K+fD+X+C)) ; 
:CRD DFOURtV i 

REAL H.HS,EO.ESO,AODEXZ~,AS,EXZS,D,C,RES.TC.~FT ; 
ENFEOER JKMAX,J,K.I ; 
hRRAY ALO,EEO.ALS,BESIl:41 ; 
CORHAT INF := “(5H EO =,Fl4.10/6H ALPHA.3X.4E20.10/5H BElA,4X, 

4E2Q.l0/16H SEMI-HAJOS AXIS,E20.10/13H ECCENTRICITY,E20.10/4h 1 8, 
ElB,lO.l3H l (E-E01 +.E20,10,19H l (SIN(E)-SIN(EO)))” : 

DATA IN: 
CEAD~~~.EO,ALOI~~~ALO~Z~.ALO~~~,ALO~~~,ME~~~~~BEO~~~,BEO~~~,~EO~~~~ I 
CUTPUT(51.“(13HlCENTSAL HASS//4M H ~,ElB.lO//// 

22H SATtLLlTE UNPfRTURBED/)“,M) I 
A0 := ALOI11~ALOIll*AL0~21~ALOI2l*ALOl3l*ALOI3~+ALO~4l~ALOI4~ I 
EXZO := BE~lll+BEOIll+BE0121~B6O~2l*~EOI3l~BEOl3l+~EOt4l*BEO~4l I 
LO a= (AO+tXZ0)/2 ; 
EXZO := (-AO*EXZO)/AO ; 
CUTPUT~~~.INF,EO.ALO~~I,ALOI~)~AL~~~).ALOI~~,BEO~~~,BEO~~~,~EO~~~, 

BEOt41,AO,EXZO,AO*l.S/SORT(~~) ,-EXZO*A0’1,5/SQRT(H)) i 
CfAD~HS,ESO,ALS~lI.ALS12).ALStSl,ALS(41rUESlll,BES~2l~BES~3~,@ES~4~~~ 
CUTPUT(51.“(///16H PERTURBING MASS//4li II ~rEl8.lO)“rMS) i 
AS I= ALS~ll~ALSIl1+ALSI21cALS121+ALSI3lrALS(3l+ALSI4l~ALS~4l i 
EXZS := BESlll~BESI1I+BES~2l~BES~2l+BE~l~l~BESl3l+~ES~4~*BES~4l ; 
AS := (AS+EXZSl/2 i 
EXZS := (-AS+EXZS)/AS ; 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

BESI~~,AS,EXZSIAS*~.~/SQRT~~~*~S)~-EXZS~AS*~,~/SQRT~M+HS~~ ; 
SEAD(JKHAX) I 
CUTPUT(Sl,“(/// 

59H APPHOXIMATION OF THE FOURIER SEHItS BY FOURIER POLYhQYIALS// 
BH JKMAX =.15)“,JKHAX) 1 
READ(TF,TFT) I 

RESCNANCE ANALYSIS: 
t := SQRT(l*HS/M)+(AO/AS)t1.5 I 
C := ESO-EXLS*SIN(ESOJ-D*(EO-EXZO+SIN(eO)) I 
CUTPUT(Slr”(///lYH RESONA:ICE ANALYSIS//5H El =.FlJ.l016H l E +. 

F14.10/)“rU.C) : 
6ES := 1 ; 
'oi'MNJ:'l STEP 1 UNTIL 2*JKMAX DO 

I := ENTIER(J/D) ; 
COR K:=I-1.1,1+1.1+2 DO 
IF ABS(J-K*D) 5 RES THEN 
BEQIN 

RES := ABS(J-K+7) I 
OUTPUT~Slr”(lX~14,21 -,14,2H +,FlJ.l0,4H =,F15.10)“, 

J,KrD,J-K*D) ; 
END a 

:END I 
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FIRST ORDER PtRTUHBATIONS: 
CUTPUT(51.~~(26HlFIRSt ORDER PERTURSATIONS~“) I 
fiEWIND(l) i REWIND127 ; 
FOR J:=O STEP 1 UNTIL 2+JKfiAX DO 
D6GIN 

ARRAY Fll:81.FKll:8.0:2~JKYArl i 
FOR K:=O STEP 1 UNTIL 2rJKHAX DO 
SEOIN 

-PF~Y~MS~3.1415926536/JUMAXbJ,3,1415926536/J~MAX~K~ALO,6EO, 
AOIEXZO,ALS,GES,AS,EXZS,F) I 

FOR I:=1 STEP 1 UNTIL, 8 DO FKlI,KI := FIII I 

BINURITt(2, FOR I:=1 St@P 1 UNTIL 8 DO ( FOR K:=O STEP 
1 UNTIL z*JKMAx Do FKII.KI)) i 

GND : 
;i;INI:=l STEP 1 UNTIL 8 DO 

INPffQER 11 I 
ARRAY FJKLO:2+JKM4X.O:2rJK~AXl,DELlO;JKMAX-l,-~JK~AX-l~:J~MAX-l, 

1:21 ; 
REWIND(Z) ; 
rOR J:=O STEP 1 UNTIL 2eJKnAX DO 
GINREAD(2, FOR II:=1 STSP 1 UNTIL 1 DO ( FOR K:+O STEP 

1 UNTIL O+JKMAX DO FJKfJ,KI)) I 
DFOURAN(JKMAX,FJK,DEL) ; 
DFOURINT(JKMAXIDEL.C,D,EO) I 
BINURITt(lr FOR J:=O STGP 1 UNTIL JKMAX-1 DO ( FOR 

K:=-(JKMAX-1) STEP 1 UNTIL JKHAX-1 DO 
~DELIJ,K,llrDELIJ,K.21)~~~ I 

IF I<4 THEN 
OlJTPUT(51,” (////8M D ALPHA,I2,4H +,E8,O//)“rI,TF) 

ELSE 
OUTPUT(51,” (////7H D 8ETA,I2,4H +rE8.O//)“rI-4.TF) : 
OUTPUT(~~I”~~~H SECULAR TERM =,F13,0,11R l (E-E0)//2X,lFE,2%, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1HE,2X~2HEl,lOX.3HCOS,llX,3HSIN/~”,lF~DELtO,O,~~~ ; 

0UTPUT~~1~“~13.14~F14.0~“,0.TF+DEL10,0,11~ ; 
FOR K:=l STEP 1 UNTIL JKYAX-1 DO 
0UTPUT~51,“~13,14.2F14.0~“,0.K,2~TF~DEL~0,~,11, 

-2tTF*DELlO,K,21) ; 
COR J:=l STEP 3 UNTIL JK’!AX-3 DO 
BOOIN 

OUTPLJ1(51r”(lX)“) : 
FOR K:=-(JKHAX-1) STGP 1 UNTIL JKMAX-1 DO 
0UTPU1~51,“t13.14.2F14.O.)X1214.2F14.0.4X,214,2F~4,0~“,J,K, 

2+lF+DEL~J,K.llr-2~TF+DEL(J,K.21.J*l,~,2~TF~DEL~Jtl,~,lJ, 
-2*TF+DELlJ*1.K,21,J+2,K,2*1F*DtL(J+2.K11~,-2*1F 
l IltLIJ+2,K,21) I 

END I 
END ; 
fiE~1NDti) ; REvilND(2) ; 
FOR I:=1 GT6P 1 UNTIL 8 DO 
DRGIN 

REAL 0fLYlI,DE~921 ; 
ARRAY UfL~DF9DDEL4N,DEL9IIOIJKHAX-l,~~JKHAX-1~:JK~AX-l,l:Z~ I 
GINREAD(1. FOR J:=O STEP 1 UNTIL JKNAX-1 DO ( FOR 

K:=-(JK+lAX-1) STEP 1 UNTIL JKMAX-1 DO 
(DELIJ,K,ll~DELlJ,K.21))) I 

DELIO,Onll := DEL~O.O,11-OELI0,0.2lrEO ; 
PDF9DDELAN(tl.ALO,BEO,AO,EX~O,I,DF9DLlELAN,JKtlAX~ ; 
DEL911 := DF9DUELAYl1.0.11+DEL~0,0.21 ; 
DEL921 := Dt9DDELAUtl.0,21~3EL1010.21 ; 
DELIO,O.ZI := 0 ; 
DFOJRPROUSP(JKMAX,OEL,DF9DDELJI) ; 
GINWRITt(2, FOR J:=O STEP 1 UNTIL JKMAX-1 DO ( FOR 

K:=-(JKVAX-1) STEP 1 UNTIL JhMAX-1 DO 
(DELYIIJ.K,lIrDEL9IIJ.K,Zl))rDEL9ll,DEL92l~ ; 

END : 
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REWIND(P) : 
DBGIN 

REAL DtL91.DfL92rDEL91I,DEL921 i 
ARRAY UEL9,UEL9IIO:JK~AX-1,-(JKnAX-l~:JKHAX-l,l:2l : 
DEL91 := 0 ; DEL92 := 0 ; 
FOR J:=O STEP 1 UNTIL JKYAX-1 DO 
FOR K:=-(JKHAX-1) STlP 1 UNTIL JKHAX-1 DO 
B601N DtL9[J.K.11 := 0 i DEL9fJeK.21 := 0 END ; 
POR I:=1 STEP 1 UNTIL 8 DO 
BEOIN 

EINRtAD(2r COR J:=O STOP 1 UNTIL JKHAX-1 .DO ( FOR 
K:=-(JKHAX-1) STGP 1 UNTIL JKHAX-1 DO 
(DEL9IIJ~K~1l.DEL9IIJIK,2)))rOELP1IIDEL9lI~DEL92 

DEL91 := DEL9l+DEL911 : OEl.92 := DEL92+DEL92 
FOR J:=O STEP 1 UNTIL JKMAX-1 DO 
FOR K:=- (Jl(tlAX-1) ST6P 1 UNTIL JKPIAX-1 
BEQIN 

lltLY1J1K111 := DEL~~J,K.~~+DEL~I~J,K,~~ i 
DELPIJ,Ke21 := DEL91J,K,21+DEL9I[J,K.21 : 

END I 
END ’ 
DFOURiYT(JKMAX,DELY.C,D,EO) : 
DEL9l0,O~ll := OEL9t0,0,11-2*COS(EO)+OELP1*2+SI 
DELPllrO.11 := DEL9llr0,1l*DEL91 I 
DEL9ll.U.21 := DEL911,0,21+DEL92 I 
BINWRITE(1, FOR J:=O STEP 1 UNTIL JKMAX-1 

K:=-(JKKAX-1) STEP I UNTIL JKMAX-1 DO 

I) i 
1 ; 

DO 

N(EO)*DELY2 I 

DO ( FOR 

(DEL9lJ,K,1I,DEL9IJ,K,2l)).DELP1.DEL9l~DEL92) i 
OUTPUT(51."(////8~ D T +,f8,0///16H SECULAR TERt'S =rFlJ.O, 

1lH l (E-E0)/16X.F13.0.26H l (E+CCS(t)-EO*CCS(EO)J/l6X, 
F13.0.26H l (E*SIN(EJ-60+SIN(EO))//2X,lHE,2X,2HEl,lOX,3liCOS, 
1lX.3HSIN,8X,lHE.2X,2~El,lOX,3~CUS,llX,3HSI~,8X,lHE,ZX,2HEl, 
10X.3HCOS,1lX.3HSIN/)", 
TF1.T~T*UEL9[0,0.21r2+TFT+0EL92,2*TFT*DEl.91~ I 

0UTPUT(51r"(13.14.F14.0)",0,C,TFT*DEL910.0,11) I 
FOR K:=l STEP 1 UNTIL JKYAX-1 DO 
OUTPUT~S~~"~I~,~~.~F~~.O~",O,K.~+TFT~DEL~~O,K,~~~ 

-2*Ttr+DtL9lO,K~21) ; 
FOR J:=l STEP 3 UNTIL JKqAX-3 DO 
DEOIN 

OuTPlJr(51."(1X)") ; 
FOR <:=-(JKHAX-1) STEP 1 UNTIL JKHAX-1 DO 
0UTPU1~51,"~13,14.2F14,0,4X,214,2F14.0,4X,214,2F14.0J", 

J~K~~~~FT~DEL~~J~~.~I~-~'TFT*JEL~~J~K,Z~, 
J*lrK,2*TFT*DEL9lJ+1,K,ll,-2*rFl*DEL9lJ*l,K,2~, 
J*Z,K,2+TFT*SEL9IJ+2,tt,ll,-2*TF~*DEL9lJ*2,K,2lJ ; 

END I 
END I 

EVALUATION OF IHE SERIES: 
BEGIN 

iEAL E,UtLEV.DELPl.DEL92.T I INTEGGR 11.12 i 
ARRAY DELIO:JKHAX-I,-(JKHAX-l):JKMAX-1,1:21 i 
READ(I) ; 
IF It0 THEN OUTDuT(51, "(E~H~EVAL~ATICN UF THE CEtilES)") ; 
FOR Il:=l STEP 1 UNTIL I DO 
BEOIN 

READ(E) ; 
dUTPUr(51,"(////4H E = ,F14.1lJ/26X,llhUNPEHTURBED.PX, 

12MPEHTURBATION,9X.YHPERTURtEu/lOXI5HALPHA~",t~ i 
REWINL)~~) : 
FOR 12:=1 STEP 1 UNTIL 4 DO 
SEOIN 

RINREAD(1, FOR J:=O STEP 1 UNTIL JKCAX-1 DO ( FOR 
K:=-(JKtiAX-1) STEP 1 UNTIL JKHAX-1 DO 
(DtLIJ.K,lI.DELIJ,K.21)))) ; 

DFOURtV(.t.EO.JKHAX,3ELIC.DIDELEV) I 
JUIPUT(51,"120X.3E20.10~" ,ALO~I~~,DELEV,ALO~I~~*UELEV) ; 

END i 
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FOR Ii?:=1 STEP 1 UNTIL 4 
8601N 

,DO 

BINREAD(1, FOR J:=O STEP 1 UNTIL JKHAX-1 DO ( FOR 
K:=-(JKHAX-1) STeP I UNTIL JKMAX-1 DO 
~D~LlJ,K.l~rDELIJ,K,21~~~ I 

DFOUREV~E,EO,JKMAX,DEL,C,D~DELEV) I 
OUTPUT~51.“~20X,3E2O,lO~ “,BEOII2I.DELEV,BEO~~2l*UELEV~ ; 

6ND ; 
EINAEADflr FOR J:*O STUP 1 UNTIL JKtiAX-1 DO ( FOR 

K:=-(JKMAX-1) STEP 1 UNTXL JKHAX-1 DO 
~UELIJ,K,lI.OELIJ.K.21~~.DEL9l~DEL92~ I 

DFOUHEV(f,EO.JKHAX,DEL,C,D,DELEV) I 
DELEV 1= 2*DEL92+~E+COS~E~-EO+COS~~o~~*2~DEL9l~~E~SI~~E~ 

-fO*SIN(EO))+DELEV i 
T := AO~l.5/SORT~H~~~~E-BO~-EXZO~~SIN~E~~SIN~EO~~~ I 
OUTPUT~5lr”~/lOX~lHT,9X,3E2O~.lO~”,T,DELEV~T*DELtV~ I 

IN0 j 
CND I 
CUTPUT(51,"(//////11~ END OUTPUT)“) ; 

RND : 
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I 

Appendix 2.4 -* Output of program ANPER. Fourth example. 

II l 1.0000000000E.02 
ED = 
AlPHA S.OOO:oOoOOOE 00 
161A 

s.*00000oooOE 00 

sELI-“.JoR ,x,s 
3.00000000001 0: 

l.lOC000Fki00E 01 
0 ~-s.OOOOOOOooOE 0: 

ECCE*TLIC*T” 0 
1 - ?.598.¶¶SIa?PE 01 . (E.EO, + -0 . CSINIE,.EIHCEO,, 

ReSON*LCE ANAt."S,S 

CI . ."6*380?,24 . E . 

I- 13. .06.5380?424 
:: 

:;: 
.0683RO7,24 
.0683HO?424 

2. 29. .06.95807,24 
3. 4,. .060380?424 
I- 73. .0685007424 
8 - jI? . .OLBSR0?424 

. 
. 

I . . . . 

5310 96623 
36772 494696 

-,0007? 1~24170 
17ss195 -6651752 

-1*094.94 26903298 
17186255 -I06000613 

-,,,6,6559 4006094R2 
2136046561 -1402294290 

-PS'iPPPb203 45694P2,02 
53175S9t.8 582558555 

-2273519972 -430785509 
464104596 25703605 
46P1,,0,0 16490?2,56 
-5?,?31s? -352537167 

221PP37 716512,O 

-17 
-1, 
-in 

-9 
-8 
-7 
-6 
-1 
-4 
-3 
-2 
-1 

: 
a 
3 
. 

17 
-1160 
i2173 

-12204 
,m75* 

-2680999 
13791,,5 

-665LSOSP 
297081710 

-1166002161 
32Pi2.9051 
-,01825?,, 

8,6,868?9 
-1421,0113 

55071,,1 
-':;:W;$; 

co5 

-568 
36S6 

;:z 
-56,532 
1677401 

.1183~369 
,762?%5, 

-i643626?5 
,076,56a2 

-,,SO5,S96 
122022511 
-5l72POli 

2.761.86 
-6962909 

572615, 
-121736, 

1;::;: 
201,7 
-41s9 

913 
-205 

41 
-11 
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e El 

4 42 
4 -iI 
4 -10 
4 .G 
4 -I 
4 -7 
4 .t 

SIH 

-1191 
4657 

1155 
-4*5, 
17437 

.,PSJ! 
176172 

-420377 
659237 

::::::: 
279197 

-113554 
173370 
-54622 

Sb220 
-118.97 

3992 
-916 

110 
15 

-12 
4 

-16954 
55932 

-156548 
302636 
100434 

-4432012 
24117595 

-57.549068 
12031040 

-2717550.5 

4 -5 
4 -4 
4 -3 
4 -2 
4 -1 
4 0 5 : Ii.32360 

5 -111434 
5 a 52115 
5 3 -709 
5 4 -5729 

4 
4 : 

3 
: 4 

: : 
4 7 

B 
: 9 
4 10 
4 li 
4 12 

-0 
1 

9 -12 
0 -iI 
P -10 
9 -9 
9 -8 
P -7 
P -6 
P -5 
P -4 
9 -3 
9 -2 
P -i 
P 0 
9 
P : 

: : 
P 5 
P 1 

7 -I2 
I -II 
7 -10 
7 -9 
7 -8 
I -7 
7 -6 
7 -5 
7 -4 
7 -3 
7 -2 
7 -1 

-7, 
711 

-3901 
15499 

49603 
11734a 

-166367 
31041 

-105640 
7958 

-17.946 
4400 
-PC80 

660 
-103 

132 
-74 

43 
-20 

.: 
1 

-: 
9 

93 

: 
” 

7 : 
7 
7 : 
7 5 
7 6 
7 7 

: B 9 
7 10 
7 
1 I: 

-3 
6 

-21 

-3 
7 

-I 
1 

IO -12 
,o -11 
10 -10 
15 .c 
:II -8 

-7 
-7 

5 
I 

-0 
0 

-0 
0 

-0 
0 -5 

1 
-0 

0 
-0 

0 
0 

-0 

-0 
-0 

0 
-0 
-i 
-0 
-0 

0 
-0 

0 

-0 
0 

-1 
2 

1 
-2 

0 

etc. 
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-1150%4505tl 
21365564621 

.339.57c.63205 
8212115157 

-IPo2P24203 

cm SIN 

E * 80.0000”00000 
UtiPERTIIRRC” W.QT”RHATION PERTURBED 

ALP”, 
~.0?10018118~-“* l.,,h34598836-04 l.o713841*7PE-01 

I.0000”0”001F 0: 
-2.54P3975552E.03 -2.5493975**2E-o3 

1.49r654”111E-03 1.0016946540E 00 
0 3.105264572oe-04 3.1C52645720E.04 

BETA 
1.0000000001~ 00 -5.5"13833139E-04 9.P944P1616,E-OI 
1.0000"0000"F no ,.94?34072166-04 1.00049473401 00 

-?.0?100?R114F-01 4.930389?4226-04 -1.066,314221E-0I 
-1.4142135624E on 1.161283,4366-03 -1.41284527921 00 

T 4.18274392271 02 2.11n00038LOE-02 4.~.52955?228E 02 

E El 

3 -12 
3 -1% 
3 -10 
3 -9 
3 -8 
3 -7 
3 -6 
3 -5 
3 -4 
3 -3 
3 -2 
3 -1 
3 0 

: : 
: 1 

3 : 

: 6 7 

: : 
3 10 
3 11 
3 12 
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3. THE RESTRICTED ELLIPTIC THREE - BODY PROBLEM 

by J. Waldvogel 

3.1 Theory 

In sections 1.1.2 and 1.2.2 the restricted circular three-body problem has 
been considered (computation of a particle's orbit in the force field of two at- 
tracting centers - referred to as earth and moon - on the assumption that the 
moon's orbit about the earth is a circle). In the 3-dimensional case the simultane- 
ous regularization at both attracting centers could be carried out by the use of 
the B3-transformation. 

In the sequel we develop the regularizatlon of the more general restricted 
elliptic three-body problem, but we content ourselves with the important points of 
the methods and proofs. A detailed analysis is contained in [4). 

In the restricted elliptic three-body problem we again consider a particle of 
negligible mass moving in the force field of the earth and the moon, but the moon 
is allowed to move on a Kepler ellipse. The fact that the particle has negligible 
mass is the only assumption distinguishing the restricted elliptic problem from the 
general problem of the three bodies. 

By means of a transformation to a suitable coordinate system the differential 
equations governing the motion of the particle in the restricted elliptic problem 
may be transformed to equations which are very simibar to those governing the mo- 
tion of the particle in the restricted circular problem. Consequently, the simulta- 
neous regularization of the restricted elliptic problem at both attracting centers 
may also be carried out using the B3-transformation. 

3.1.1 Equations of motion. Let 77~ be a particle of negligible mass moving in 
3-dimensional physical space. The forces acting on the particle are the Newtonian 
attractions of two attracting centers - referred to as earth and moon - having the 
masses m, and m, respectively. As these point masses are not influenced by the 
particle, they move about their center of gravity 0 on Kepler orbits. Only the 
elliptic case of this Kepler motion is considered here. 

We introduce a rectangular coordinate system 7,) rz, rS with origin 0, ro- 
tating about its YJ-axis with angular velocity LL) in such a way that the earth 
and the moon always lie on the 'I,-axis. Thus the $&,t/,-plane is the orbital 

plane of m, and m,. The varying distance between the earth and the moon is de- 
noted by e. Let Z,J be the true anomaly of the Kepler motion; this may be defined 
as the angle between the direction from the center of gravity to the pericenter of 
the moon's orbit and the positive T,-axis (Q. L 3 1). The orbit of the moon with 

respect to a rectangular coordinate system centered at the earth (with axes of 
constant direction) is referred to as the relative Kepler orbit. 
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Q. 3.1. The restricted eLLlptic three-body probLem. 

From the theory of KepLer motion [63 we recaLL the rebatlons 

Here 

(3,3) 

is the gravitational parameter, f the gravitationaL constant, and P and e are 
respectiveLy the SemiLatus rectum and eccentricity of the relative Kepler eLLlpse. 
In order to state the reLationshIp between the true anomaly W and the physIcaL 
time t we aLso introduce the eccentric anomaty E of the relative KepLer eLLlpse, 
defined by 

(3,4) 

Then, introducing the semi-major axis CZ of the retatlve KepLer eLLipse given by 
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Kepler's equation 

/f-t - Qh (E- es&E) 

enabLes us to compute t from a given value of E. 

FinaLLy, in terms of the mass ratio ,u, defined by either of 

(3,5i 

the coordinates of the earth and the moon are 

(3,7) 

respectlveLy. 

In order to establish the differential equations of the particLeIs motion in 
the coordinate system T,, ?a= ;1~, we List the forces acting on the particLe per 
unit of mass (denoting differentiation with respect to physical time .f by a dot): 

centrifugaL force 

Coriotis force 

force caused by the 
anguLar acceleration 

gravitation 

Here # is the gravItationaL potential. 

and PI and PZ are the distances of the particLe from earth and moon respective- 
Ly, given by 

The equations of motion of the particLe are 

(3910) 

As Scheibner [II] suggested in 1866 it is possible to reduce the restricted 
eLLiptlc three-body probLem to the restricted circular probLem by simpLe substitu- 
tions of the variabbes. For this purpose we introduce Into (3,lO) the true anomaLy 
+I instead of the time as independent variabbe: 
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(3,2) (3,111 

Denoting differentiation with respect to w by an accent. we obtain 

g. - ccr $7&f, +;. - cda T*." -6 c&d p' ) i- /,t,3. 

L'slng these rel.ations in (3,lO) we find 

Taking into account 

(3,2) 

(3,12) can be written as 

w ’ - = w -2$, 

(3,12) 

(3313) 

Following Scheibner's proposal we further Introduce the dimensionless varia- 
bbes yi defined by 

7i - 62 , L'.- 1,2,3 (3,14 1 

and'restate some of the preceding results (in particular the differentiat equations 
(3,13) ) in terms of these dimensIonLess variables. In the yi -system the earth and 
the moon occupy the fixed points 

(3,7)(3,14) 

respectively. It Is convenient to introduce also the dimensionless distances 

which are the distances of the point (y,,yz, YJ/ from the points (3.15): 

(3,91(3,14 1 Ff - ~ij’,+pJz+y~L+~~ , r, - /(y,+,~--//~+y~~+~=. (3,161 

Remembering that 6 is a function of w, we obtain for the derivatives of P the 
expressions 
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Inserting these into (3,13) yieL& 

By using the differential equation 

(1 1”+ ,r- r 
e e P 

(3917) 

satisfied by the expression occurring twice on the left-hand side of (3,17) is 
reduced to 

Furthermore the common factor on the right-hand side of (3,17) may be written as 

(3,~) 

By finally substituting the dimensionless variables into C$ and its partial deriv- 
atives, 

the differential equations (3,17) of the restricted elliptic problem are trans- 
formed into 

(3318) 

In the restricted circular problem (e = 0) 6 Is constant (-,o ); therefore 

the factor e/p is the only correction to be made in order to generalize the cir- 

cular to the elliptic case. In the circular case also 6~ is constant; thus the 
transformations (3,11) and (3,14) are merely magnifications of the time and space 
variables. These transformations then do no more than to introduce the special u- 
nits defined at the beginning of section 1.1.2. 
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In the next section the differential equations (x,18) will be regularized. Ac- 
cording to the methods given In section 1.1, we require quantities which correspond 
to the potential function u and the perturbing forces pi of the table following 
(1,16). Thus, our Intention Is to find functions u(y,,y,,y,, 'u/ and pi(y,;>:y,] 
(i- 4 2,3 ) so that (3.18) may be expressed in the form 

au 
YL’- -ay +-pi I i- 1,2,3 . 

i 

This may be accomplished as follows. We notice that the expressions In the square 
brackets of (3,18) are the partial derivatives of the function 

with respect to y,, YL and Yj respectively. As the factor 

(3,l) e -= 1 
P f+em5p 

does not depend explicitly on Ye, the potential &! is-the function 

(3,20) 

(3,a) 

For the special case of the restricted circular problem (e- 0) it coincides with 
the potential. (1,62). It should be stressed however that &! depends explicitly on 
the independent variable ?+J. 

The perturbing forces ,Oi acting in the restricted elliptic problem are, ac- 
cording to the equations of motion (3,18) and (3,19), 

(3,22) 

This force may be regarded as a modified Coriolls force; the formulae (3,22) are 
similar to (1,30). 

3.1.2 Regularlzatlon. The potential (3.21) occurring in the restricted elliptic 
three-body problem Is singular at the two attracting centers (3,15). Because it de- 
pends explicitly on Z,U, the theory of section 1.1 (in particular equations (1,20), 

(1,23),(1,24) ) must be slightly generalized. But the method being used in section 
1.1.2 in order to reguLarize the 3-dimensional restricted circular problem at both 
attracting centers can still be applied here. Thus we again introduce the four gen- 
eralized coordinates y by formula (1.64): 
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@a=) 

The functional determinant D of this B3-transformation is given by 

(3,241 

where the distances r,, P, must be written in terms of the y: 

For our eLLiptic problem the regularizing independent variable J plays the role 
of a "fictitious true anomaly" and is defined by -- 

(1,181 dv - XD.d5 - (3,26) 

As in section 1.1, h- x(V,,vL, 4. b) is a scaling factor to be specif-ied in the 
sequel. Now, the equations (1,22), adapted to our notations, have the form 

where u IS the function (3,21), V' is the squared "velocity', that is 

and the ?,, are the components of the perturbing force (Coriobis force) in the 
parametric space. The rules (1,67) for computing these forces still hold true, but 
the scaling factor A must be taken into account; this yields 

As in section 1.1, the final step of regularization Is to eliminate the velocity 
v from (3,27) by the use of an energy equation. But we should remember that our 
potential U is not conservative, and therefore a vls viva integral like (1,ll) 

(Jacobi integral) is not available. 

In order to bypass this difficulty we propose the following method. Mul.tipl.y- 
ing the i-th equation of (3,1-g) by Yi', summing over i and taking Into account 
(3,20) yieLds 
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Writing the Last term on the left-hand side as 

equation (3,29) becomes 

By integrating from the initial value r//, of the true anomaly to a general value 
v, equation (3,30) may be brought to a form simltar to (l,ll): 

where 

* g+u-h+W. (3,351) 

(3,321 

is an integral repLacing the work W of sectlon 1.1. The quantity A IS an encry3; 
constant and may be computed from the initial velocity u, and the initial note!,- 
tial U, at instant p,, by 

(3,31)(3,32) Ii- $ f & . (3,33) 

Although u* is infinite at colLisions, the integral W * 
exists for every 

finite vaLue of Z,U. Tilis can be shown by substituting the fictitious anomaly .S in 
the integral (3,32): 

(3,251 

Here the expression 

(3334) 

(3335) 

no longer has singularities at the attracting centers, provided that x remains 
finite. The denominator v,'+ v,'+ vf is in general non-zero: it vanishes only If 
the particle is Infinitely remote. This proves our statement. 

The above mentioned finab step of regularization is now carried out by eLimi- 
natlng Vl' between the equations (3,27) and (3.31). The result is (repLacing the 

ff/ by (3328) 1 

(3,361 
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(cf. (1,68)). This system of differentiaL equations must be integrated numericaLLy, 
and, in order to do this, the vaLues of W and W*must be hewn at every step in 
the Integration. Therefore we add the fotlowlng two reguLar dlfferentiaL equations 
to the system (3,36): 

(3,34) 

(3,26) 
& 
ds = AD. 

(3937) 

(3,38) 

This terminates the reguLarization procedure. Equations (3,36),(3,37) and (3,38) 
form, In aL1, a simuLtaneous system of IO regular first order differential equa- 
tions for the unknowns y., dy./d.s Q= f,2,3,&J, W”, p as functions of 5. 

By using Birkhoff's transformation, the regularizatlon of the 2-dimensionat 
restricted eLLiptic three-body problem has already been performed by Szebehely and 
GlacagLia [I23 in 1964. The result of these authors was a system of lntegro-differ- 
entlal equations. 

According to section 1.1.2 the scaling factor x(V,, V,, V,, l$) might be chosen 
as A== I. In this case the equations (3,36) become very similar to the equations 
(1,68) governing the restricted circular three-body problem. Equation (3,38) then 
becomes 

(3,391 

In order to integrate the system (3,36),(3,37),(3,38) of differential equations nu- 
merically, the independent variable J is chosen to have a constant increment. As 
(3,39) shows, the corresponding increments in w become smaL1 whenever one of the 
distances r,, r, becomes smaL1 (i.e. whenever the particle comes close to the 
earth or to the moon). This is the most important advantage produced by regulari- 
zation. 

On the other hand, however, any variation in the denominator b.$+ v,'-+ r;' 

modifies the step length of l,U. Since the V+-axis, whose equation is $5 g+ g 

- 0, corresponds to infinity in the physical space (cf. (3,23)), the denominator 
of (3,39) approaches zero if the particle escapes to infinity. From a numerical 
point of view a smalb denominator shouLd be avoided. Our numerical experiments show 

that v,=+ VP f l$ may approach zero even if the particle is not extremely far a- 
way in physical space. In such a case the increment in 2.0 becomes very large with- 
out any physicaL reason, and sometimes the numerical integration breaks down. 

In order to avoid extremeby Large steps of ?,u, in what follows we define the 
stating factor A as 

x- v,' + v,' t r;' (3,40) 

(in the sequel A i s used as an abbreviation for $+ Vt+ Vf ). By this choice 

equation (3,38) may be written in the form 
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dz4-J - r, r, d3 

which avoids the difficulties associated with (3,39). 

In section 3.1.3 we describe a method that may additIonalLy be used in order 
to avoid extremely small. vaLues of the denominator b$*+ b=+ $. 

For our choice of x (cf. (3,40)) we now proceed to establish an exptlcit 
form of the system (3,36),(3.37),(3,38). 

We muLtiply equations (3,36) by A'; the first term becomes 

(3,411 

where 

A,--g$, r;- 1,2,3,+ , 
A, = zv,, A21 zv,, A, = Pv, , A4 = 0 . 

The second term is transformed as follows: 

(3,421 

where Q is an abbreviation for the expression on the right-hand side of (3,35): 

Q- AD&*- - (f-p)(r2+3r,3~) - p(r, f;~ t--j) . (3,441 

In order to carry out the partial differentiations required on the right-hand side 

of (3,431, we introduce the quantities 

(3,45) 

as welb as 

(3,461 

and 
q- A=% - r, r$. f r, rx . - r, r, A,. . (3,47) 

/ / 

Then we obtain 
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By using the symboL & defined in (1,67) as weLL as the abbreviations (3,40), 

(3,42), (3344) - (3,47), the reguLarized system of differentiaL equations then be- 

,+e~sy(Q,~-~Aj) -~~yj- XbJj+ (h-$&“,o, 

( $4 - Kronecker's symbol) (3,491 

(3,37) + - Q e sin 2.6 

(f+ e ws +JL 

(3,381 ds dF, = r, I--- . 

FinaLLy, in order to evaluate the derivatives 6/;c , we notice that by introducing 
the quantities 

p - v, v4 - f vj , (3,50) 

and 

the B3-transformation (3,23) may be written as 

Differentiating these equations while taking into account (3,50) and (3,51) yields 

(3,53) 

In the sequel the points (8, 0,0, 0) and (-2, O,O, 0) are called centers (in 

the parametric space). BY the B3 -transformation (3,23) each of them is mapped onto 
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one of the attracting centers In the physical space. 

If the point y Is near one of the centers, the xb,y (/'-G&3 ) appear In 
(3,53) as differences of two almost equal quantities. The following manner of com- 
putation avoids the Loss of significant figures. 

(3,50a) 

Assuming that the regularized variabtes l$, cfy/./ds,w: v/ are given for a 
general point of the particle's orbit, the physical coordinates, velocity and time 
can be computed as foLlows: 

a) The B3-transformation yields the dimensionless coordinates J$, and with 6 
determined by (3,1), the physical coordinates Tt. are obtained from (3,14). 

b) The derivatives of yi with respect to w are obtained from (1.19), 

(3,54) 

where the hii are given by (3,53). A f0rmul.a for the computation of the velocity 

e-./&t in the physical space can be estabLIshed by differentiating (3,14), tak- 
ing Into account (3,11),(3,2) and (3,l): 

Ti - Lc, (Q.---f F$‘.) - 

(3,55) 

c) The physical. time t may be computed from ?,D without integrating a differ- 
ential equation by using the formulae (3,4) and (3,5). 

We now add a few remarks concerning initial conditions. From a given initial 
anomaly w., initial position 7~ and initial, velocity ii the Initial dimension- 
less coordinates yd. may be computed by (3,I) and (3,14). The formul.ae for the 
computation of the InltiaL derivatives Y;'- c/y;/&?& are obtained by solving 

(3.55) for x' and using (3,14): 

The regularized coordinates y may be computed as described in the sentence fol- 
lowing formula (1,69). Then, according to (1.19). the Initial "velocity" $/dJ 
Is given by 

&, 
d5 

l,2,3,4 . (3,57) 
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It may be verified that the components of the velocity computed by (3,57) sat- 
isfy the relation 

(3358) 

are given by (3,50), and may be defined by (3,50a) or by 

Equation (3,58) is the above mentioned non-holonomic condition beLonging to the B3- 
transformation. If this condition is satisfied by the initial values of the parti- 
cle's motion, it is satisfied by the regularized variables of this motion at any 
time (i.e. for any 5 ). The proof of this statement is contained in [4]. 

Finally we collect the formulae of this chapter in order to establish a set of 
guiding rules calbed 

Fifth procedure 
(SoLution of the restricted eLLiptic three-body problem from given initial 
values by numerical integration of the reguLarized differentiaL equations.) 

Data 
Universal constant: ------------------ 

Y gravitationaL constant. 

Constants characterizing the earth-moon system: _____-__________---_-------------------------- 
nzf, m2 masses of earth and moon respectiveLy. 

Compute: 

* m2) (gravitational parameter), 

(mass ratio). 

PJ e 

Compute: 

semiLatus rectum and eccentricity of the moon's reLative Kepber 
eLLipse about the earth (,0Jo, 0 L e c r). 

(semi-major axis). 

Initial data of the particLeIs orbit: _____--___---------_---------------- 
wo initial. true anomaly of the moon in its reLative KepLer ellipse. 

Qf > 72 J p 
initial position 

1 

of the particle in the ro- 
tating coordinate system (3,591 

+, P f* I f3 initiaL veLocity described in section 3.1.1. 

InitiaL values for the reguLarized system 
Compute successively the following quantities (which are aLL evaLuated at the in- 

stant $&): 
Initial. distance earth-moon: -___---_-------------- ----- 

100 



Initial distances particle-attracting centers: -------^------------------------------------- 

G- Jru,+/4i)z+yi2fy; , r, - 40, +p-o'+y~fy~~ - 

Initial potential u and constant of energy h: -------------_--------------------------------- 

u _ $- +.+ + +fj -p (6 + -gjJ + g , 

uz = y/ 
2 2 

+y:=+y; , 
(3361) 

A lL+ a. a- 

Initial values Ji -and derivatives yi' of the dimensionless coordinates: _--------_--___ - ________-_-______ ___---___---_-___------------------ 

y,. - F , y‘! - +-+ ft. - $ stir to,. p , i- f,2,3. (3.60) 

The initial, values 5 of the reguLarized coordinates _-----------___----_---------------------------------- 
are computed by the fobLowing set of formuLae (obtained by reading tabbe (1,31) 

from bottom to top): 

Xf - I+ =Y??Ycd 
G L ; xi - s/i 

G 2 ' L'Z z,3 . (3,62) 

Inverse KS-transformation (cf. 2nd procedure): 

Take the Left- (right-) hand set if x, > 0 (x,< 0) and choose U+ (u,) arbi- 
trariby. FinaLLy the reguLarized coordinates are 

5 = bC~,~,)l+u&ztu j 9 - 
cci 

’ 
(3,63) 

2 3 z 
&,- f)% u,z+ UJL f uq= 

J’- 2, 3, 4. 

Initial derivatives dv./d~ : _,--------------------I-------- 
By applying the formuLae (3,50),(3,51) and (3,53) with 

A= v,' f v= f v3z 

the values of the coefficients CA 6&y) at instant PO are obtained. The initial, 

derivatives c+ /A5 are then given by 

The initial values of W*and ?,u are 0 and &G, respectiveLy. At instant ?,uO 
the independent variab e 5 may be chosen as S- 0 . 

(3964 1 
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The regularized differential equations 
for the restricted elliptic three-body problem are given by equations (3,49). In 
order to compute all the auxiliary variables occurring on the right-hand sides of 
these equations, formulae (3,40),(3,42),(3,50).(3,51),(3,52),(3,53),(3,25), (3,44), 

(3,45),(3,46),(3,47) must be applied in this order. 

Motion in physical space 
Whenever information about the motion of the particle is wanted; the results ob- 
tained in the parametric space must be transformed into the physical space. In or- 
der to do so, the quantities ~,r.,x,p,,p,,p.~~,(xbii) are first computed from the 
actual values of y, &y/d", w", ZL, by use of (3,25),(3,40),(3,50),(3,51),(3,53). 

The values y;: and derivatives y' of the dimensionless coordinates are then 
given by 

I’= r, 2.3 . 

With 

c- 
the position ri and velocity ------mm -------- ii of the particle are given by 

ins this po- tn order to determine the physical time t, at which the particle atta -------- ---- 
sition ? i, first compute the eccentric anomaly f from 

(3,66) 

and then t by Kepler's equation 

e S&Z E) . 

Checks 
Together with the transformation into physical space, two checks may easily be 
carried out: 

a) The non-holonomic condition (3,58) must always be satisfied: 

b) The equation 

(3,65) 

(3.67) 

(3368) 

(which follows from the energy eqUatiOn (3,31) by taking into account (1,20) and 
(3,21) ) has to be satisfied at any time. The quantity Q is given by (3.44). 

102 



I i- 

3.1.3 Remarks. If a solution of the differential equations (3.49) passes through 
one of the two centers (?f,o, 0, 0 ), the corresponding orbit in the physical 
space passes through one of the attracting centers. In this case the particle col- 
lides with the earth or the moon. As a consequence of reguLarization the deriva- 
tives dy/dJ have finite Limits even at collisions (in the physical space the 
the components of the particLe's velocity generaLLy tend to infinity if the parti- 
cle collides with one of the attracting centers). 

In order to discuss the two types of collisions together, we introduce the 
sign 6 which takes the vaLue Cf or -I, according as the particle coLlides with 
the moon or the earth. The attracting center with mass 

then has coordinates 

in the physical space. The corresponding point in the parametric space is 

o- 
v,=z, vt- v3 = v+ - 0 . 

We now consider a collision of the particle with the attracting center indi- 
cated by Q. Then 

e- 
v--z, I v,---0, %--0 v-o. e 

According to (3,25),(3,40),(3,44) the following Limiting values are obtained 

ff6 x-i, ‘i--, G - 4-O- 2’ Q -- (2 f 6lp-$1) . 
Substituting these in the energy equation (3,68) gives 

(3,72) 

where WC is the vaLue of the true anomaly at the instant of the coLlision under 
consideration. Thus at a coLlision the limit of the squared veLocity in the para- 
metric space is finite and does not depend on the direction of the collision. 

In the case of a collision, the velocity can no longer be transformed by using 
equations (3,64) and (3,65), b ecause the physical velocity becomes infinite and all 
the hti vanish. However instead of mapping velocity vectors at one of the centers 
in the parametric space, we may establish a correspondence between the directions 
of vectors at these centers. 

We add to the position vector (4, O,O,O) of the center given by 6 the 
smalL increment 

(o-v,, i;, , G,. $1, (3,73) 
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which is paralLeL to the velocity vector 
( 

&, & dv, dv, 
ds u!s’ds’Ar ! 

at this center. 

In order to obtain the corresponding increment which is denoted by 

bY,> % 2 YJ , (3974) 

the point 

1d21tC;I). k, -,, 4) (3,751 

is mapped into the physical space by the B3-transformation. Substituting (3,75) in 
(3,23) and expanding the results in power series at the point (g,o,O,O) yields 

Yl 
4te- DE-- 
2 p f u(i+ c;,'-- <'+ y-j + . . . 

Yr = 2 ( ii, 5 - CJ V+) + . - * 

I 

terms of 3rd and 
higher order 

YJ = 2 ( F, iij f k ig + . * 

By keeping the direction of the increment (3,73) fixed, but allowing its length to 
tend to zero, it follows that the desired increment in the physicaL space is in 
fact given by (3,74) with 

-z -2 -z --I 
yr = v, - vz - v3 + vu 

72 = 2(Q+-P,~) (3,76) 

Y3 - = 2 (ij 5 f FL 7+) . 

This is exactly the KS-transformation (1,44). Since the y( are homogeneous func- 
tions of the 3 (alb having the same degree), the transformation (3,76) is a map- 
ping of the increments' direction. For that reason the length of the increment 
(3,73) may now be chosen arbitrarily; for example, simply 

r;, 
dv 

-"z+ / 645' 
v, c dv; 1" 2,3,4 . (3,77) 

The vector (3,74) (with ri given by (3,76) ) then indicates the direction of the 
collision under consideration. 

If the motion of the particle is started exactly at a collision (with the at- 
tracting center given by Q), one is concerned with the problem of finding an ini- 

tial veLocity vector 
( 

h,+%,& 
ds ds / 

corresponding to the given direc- 

tion ( uJ-, , j& , 5% 1 of the collision in the physical space. This may be done by 
applying the inverse KS-transformation (1,47) to the vector (j,,yL,y, ). If for 
simplicity this vector 

the following formulae 

is assumed to have 

-r 
y,l+ y+ y, = 

are obtained: 

(3,791 
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The vector (Uy,c, p,, v+ ) is paralLe1 to the lnitiaL Velocity vector in the 
parametric space and aLso has unit Length. Thus, according to (3,72), the initial 
veLocity vector is 

Modifications oft the f:ifth procedure for the case of an ejection 
(the InitiaL position of the partlcLe Is one of the attracting centers). 

Only these parts of the 5th procedure, which must be modified in the case of an e- 
jection, are recorded here. The subtitLes are the same as in the 5th procedure. --------- 
Data 
Initial. data: ------------ 
The InitiaL position of the particle may now be indicated by the sign 6: 

0-a motion m, (earth) 
starts at mr (moon) (3.59a) 

(v,, vz, j,) indicates the initial direction of the particle's orbit. 

Furthermore the energy constant h must be given (cf. (3,61a)). 

Initial vaLues for the regularized system 
Initial values JJi and derivatives y;' of the dimensionless coordinates: ----e-m--------- -------------------------------------------------------- 

Yf 6tf w-v 2 ps Yz-Y3=0- 
By y,' we now mean the components of the unit vector indicating the -- 
initial direction (3,60al 

~~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Initiat potential &! and energy constant h 
The forinuLae (3,61) can not be used. The energy constant /L is 
given by the initial data. (3,61a) 

Initial values of the regularized coordinates v.: ------------------------------,------------------~- 

v, = 5 , v, L v-3 - v+ - 0 . (3,63a) 

It is not necessary to appLy (3,62) and the inverse KS-transformation (1.47). 

,---,,-----------,----rr----,: InitiaL derivatives &V./&S 
The coefficients (Abq] cannot be used because they all vanish. 

With 
j+qL ji- Yz’ , J3 = Y.’ 

compute the 5 from (3.79). Use the Left-hand or the right-hand 
equations of (3,79). according as 7, is positive or negative. 

I 
(3,64a) 

The InitiaL derivatives are given by 
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where we Is the InltlaL true anomaly. 

Referring to the remark foLLowlng formuLa (3,40) In section 3.1.2 we now glv~ 
a few words on avoiding smaLL values of the denominator bff vaaf- g during nu- 
merlcaL Integration of the regularized dlfferentlaL equations (3,49). 

As It Is mentioned In the fifth procedure, there are generaLLy many points in 
the 4-dImensIonaL parametric space which are mapped onto the same point of the 3- 
dImensIonaL physical space by the B3-transformation. The set of points (w/,&,w~,w,) 
having the same Image as the fixed point (V,, V,, V,, V, ) Is caLLed the flbre pass- 
ing through the point (V,, V,, V,, V, ) and Is given by (cf. [4], page 26) 

w, f v4 sinp -v,shlp f v, asp ’ 

w4 , “ctasp +(p’-~)JIirp 

where pz is the expression 

PZ' v,=+ v,'+ vj' f v,' . 

In order to obtain at1 points of the fibre passing through the point y, the para-. 
meter p must take aLL vaLues In the interval, 0 G p c 2x. In general the fibrea 
are circles, the only exceptions being the Vy-axis v,l+ V,‘+ yjl- 0 and the two 
centers (kf, O,O,O). 

For the following discussion, on the fibre circle passing through the point y 
we introduce the points N and F. They have the property that, of aLL the points 
belonging to the considered flbre circle, their distances from the v~-axis, dN 
and dF, are the Least and the greatest respectively (nearest and farthest point). 
There are aLso fibre clrcbes, where aL1 the points have the same distance from the 
y*-axis, but this case is not Important here. The relation 

d,.,. . cLF = k (3,821 

holds true for every fibre circle. 

Let us now consider for a point y lying on an orblt,ln the parametric space 
the flbre passing through this point. If for v the denominator 

d2= $f L$+ vj= 

Is small compared with 8, it follows from (3,82) that the point y Lies near the 
point N of its flbre. In order to avoid a cLose approach of Y to N we pro- 

pose the foLlowlng method. 

If the denominator dZ at a point (V,, V,, V,, V, ) of the orbit becomes 
smaLLer than a certain Limit d,' 4 $, the motion In the parametric space is 
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stopped and restarted at another point (Wf, &,W,,W,) of the flbre passing 
through y . The coordinates Wj are given by (3,81) with a suitable vaLue of p, 
and a formuLa for computing the derivatives 3 

ds 
from 5%. 

d.s 
may be obtained by 

differentiation of (3,81) with respect to J. 

The consequence of this procedure Is not recogn1zabl.e In the physical space 
besause the B3-transformation maps aLL the points of a flbre onto the same point. 

A suItabLe choice of p may be obtained from the foLLowlng statement, [43: 

We consider equation (3,81) as a transformation (depending on p) of the parametric 
space onto Itself keeping fixed the fibres. The special transformation that maps 
the farthest point F of a flbre onto N Is given by (3.81) with p - $,,, - 2- . 
On the other hand the transformation mapping F onto a general point (5, Va, Y, V+) 
Lying on the flbre of f is given by (3,81) with 

This Information about the position of the point 9 on Its fibre may be used to 
choose the angle p occurring In (3,81) in such a way that the transformed coordi- 
nates l+$ satisfy the inequation 

ALthough this procedure may sometimes heLp to avoid extremely small. denomlna- 
tars during the numerical, integration, the slnguLarlty occurring when the particLe 
escapes to inflnlty is stiLL present. But In practice the particLeIs orbit is of 
very LittLe Interest at a great distance from the earth and the moon. 

2.2 ExampLg 

The fifth procedure is very useful for computing orbits in the restricted eL- 
liptic problem whenever the particle comes cLose to one of the attracting centers. 
In order to ILLustrate this we give here some results of numerical experiments. ALL 
the computations were carried out on the Control Data 1604-A computer of the Swiss 
Federal. Institute of Tecbnobogy. 

A computational program (referred to as SIMFUX = slmuLtaneous reguLarlzation) 
for the caLcuLatlon of trajectories in restricted three-body problems was written 
In ALGOL. In Its essential parts the program is a repLlca of the fifth procedure, 
but the transformation to an inertial, coordinate system Is added. The numericaL ln- 
tegratlon of the reguLarized dlfferentlaL equations (3,49) is aLways performed by 
the Runge-Kutta method (single step method of error order 4). 

The orbits resulting from the computations are displayed in two coordinate 
systems; we refer to them as 

a) the inertial coordinate system, 
b) the dimensionless rotating system. 
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The lnertlat coordinate system has Its origin at the center of gravity 
of the two attracting bodies (earth m, and moon q). The Il,+-axis InltlaLLy (at 
time t -0) passes through the attracting centers and Is 'directed from earth to 
moon. The II,*-axis Is obtained by rotating the $-axis through the angLe X/t In 
the moon's orbital plane (In the sense of the moon's revolution). The T.*-axis Is 
then chosen to form a right-handed rectangular system together with the two prevl- 
ous axes tlf, ff . 

The dimensionLess rotating system Is the coordinate system Y,, YL, Y, Introduced 
In (3,14). The origin Is again the center of gravity, and the y,-axis coincides 
with the $- axis. The system rotates about this axis and "pulsates" in such a way 
that the earth and the moon occupy fixed positions on the y,-axis. 

3.2.1 Transfer of a vehicle from earth to moon. In this first example the computa- 
tion of a realistic orbit from earth to moon Is described. In order to compute the 
vehicle's trajectory by the program SIMFEG, the motion of the moon had to be ap- 
proximated by a pure Kepler orbit which yleLds values for the orbItaL elements of 
the moon. This was performed by approximating a given exact ephemeris of the moon. 
We are indebted to Mr. B. Stanek for this auxiliary computation. OnLy perturbations 
by the moon have been taken into account. The resulting orbital eLements of the 
moon are: 

semi-major axis Q = 382 IOO km 

time of revolution T = 648.61321 926 hrs 
eccentricity e = .05 

lnitiab true anomaLy ?,LI~ = .3 rad 
mass ratio p = .01211 68060 i 

In aLL our examples we use "standard" units adapted to the earth-moon system 
under consideration: 

unit of length: cL (semi-major axis) 
unit of time .: 7-/z n- 
unit of mass : tn, f ZZ, (total mass) 

By the laws of Kepler motion it folLows that 

p7= '-eeL 
(semilatus rectum) 

= 2x 
%-a,-+ m, - I/ 

b- 1 (gravitational constant). 

(3,84) 

In standard units the adopted Initial conditions for the vehicle (In the rota- 
ting coordinate system described in section 3.1.1) are 

79 = -.02182 35477 +, = 5.25062 2867 

72 = - .01299 03502 & = -2.01747 1424 

q?3 = .00542 30458 3; = a.94355 4806. 
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B. 3.2. Transfer orbit from the earth Lo the moon. - 



moan's surface 

Unit at length = 382 IOOkm (semi -majar axis of the moon’s orbit 1. 

The points of the orbit with marks correspond to equal increments As = .2 of the fictitious anomaly s. 
At each of these paints the moon’s true anomaly $I (in radians) IS indicated. 

Y2 

1’ 

oj , , , , I r 
“‘“7L 

~ .99342 --,-I---T 7- -. 7 --r 7 

,970’ 

& - -I 

,975 ,900 .99 

m. 3.3. - Detail of B. 3.2: vicinity of the moon. - 
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In a. 3.2 and m. 3.3 we show the transfer orbit from the earth to the moon - 
resulting from the constants and lnitlat values listed above. The trajectory starts 
about 285 km above the earth's surface and collides with the moon's surface. IA 
this body Is assumed to be a mass point, the orbit may be continued into the inte- 
rior of the moon and further into deep space. The minimum of the vehlcte's distance 
from the center of the moon Is about ~/ZQ of Its radius. After this near-cotLl- 
sion the vehicle escapes with high velocity from the earth-moon system. 

For the numerical computation of this orbit a constant step Aa= -02 of the 
fictitious anomaly s has been chosen. Due to the Influence of regularlzatlon the 
corresponding step dzf~ of the true anomaly Increased from 4.10-h up to its max- 
imum 6.10~~ between the earth and the moon and was finally reduced to 5’10 4 at 
the closest approach to the moon. 143 Runge-Kutta integration steps were needed 
for reaching the moon's activity sphere (radius = 57 500 km), and 160 more steps 
were needed for the leg of the journey to the closest approach. No numerical insta- 
bilities are generated by this ctose approach. 

In a. 3.4 the true anomaly ?,u - is plotted as a function of the fictitious 
anomaly J. V(J) is monotonicaLly Increasing, but It increases very slowly In the 
nelghbourhood of the points s = 0 and 5 = 6.06 corresponding to the earth and 
the moon. 

I 0 1 
I 

-, ,- - 7 " 1 .I I rl 1 I c 
0 5 6.06 IO s 

x. 3.4. - The true anomaly ?+J as a function of the fictitious anomaly 3 
In the case of a. 3.2. - 

The values of the l.eft-hand sides of the checks (3,67) and (3,68) did not ex- 
ceed 1.7'10-9 and 6.5*10-g reqpect1vel.y after 500 steps. In order to obtain 
information about the exactness of the numericat Integration the same orbit was 
computed with a new step length d5 = .04 , and two corresponding sets of coordl- 
nates yi describing the arrival on the moon were compared. The maximum difference 
was 1.2.10-6 . Thus the orbit computed with d.S = .02 Is exact to at least 6 
decimal places. 

Because the eccentricity of the moon's orbit, In this example, is very small, 
we carried out corresponding experiments with a fictitious moon m, moving in an 
orbit of high eccentricity. The following input data were chosen (standard units): 
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/u = nl* = .I , p = .36 , e = .8, 3% = - .5 * 

3% =,o 7, = 0 

‘I% = 0 +; =- .5. 

15 = 0 q, = 9.15 . 

The resulting trajectory Is displayed In %. z. It Is remarkable that the 
vehicle reaches the moon JQ, altough the Initial velocity Is almost perpendicular 
to the orbital plane of m,. 

The computation proceeds in the same way as in the preceding example. No dif- 
ficulties occur because of the large eccentricity of the orbit of m,. 

3.2.2 A 3-dimensional periodic orbit in the restricted circular three-body problem. 
Recently, R.F. Arenstorf [13] has computed families of plane periodic orbits pass- 
ing near both attracting centers of the restricted circular problem. On the other 
hand C.L. Goudas [14] constructed many 3-dimensional periodic orbits without cLose 
approach to both masses. In order to make a first step In synthesizing the methods 
of the two authors, we present in m. 3.6 an example of a 3-dimensional periodic - 
orbit of a particle ejected from the first attracting center (earth) and approach- 
ing very close to the second center (moon). About 100 preliminary orbits have 
been computed by Mr. E. Sturzenegger In order to achieve perlodiclty. Up to the 
present we have not been able to construct a 3-dimensional periodic orbit colliding 
with both attracting centers. 

The system of the attracting centers is characterized by the values (standard 
units) 

fc = m, = .I , p =I, e=o. ?#.qo = 0. 
The direction of the ejection needed for periodlclty was found to be 

t-1,0, .06874 215 ) 

ln the dimensionless rotating system, while a value 

A = -.82448 546 

had to be taken for the energy constant. The half period Z/l thus became 

r/r = 7.77403 g 

(2~ = 6.283... corresponds to one revolution of the moon). 

The orbit resulting from these input data is symmetric with respect to the 

Y,, y3 -plane. This is a consequence of the facts that the initial position and the 
direction of ejection are In this plane, and that the orbit intersects It perpendlc- 
ularly at the time Z/Z . Therefore only half the orbit is plotted in Q. 3.6 (the - 
projection to the y,,y,-plane Is a curve being covered twice). 

A final remark to this periodic orbit Is added. At ejection the velocity com- 
ponent perpendicular to the y,,y,-plane is small, but later, after the close ap- 
proach to the moon, It Is very Large. This fact raises some doubts about the sta- 
blLlty of the many cLassicaL pLane periodic orbits if perturbations perpendlcuLar 

to the moon's orbitaL pLane are aLLowed. 
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3.2.3 Conctuslons. 

- From a theoretica point of view the B3-regularlsation of the eLLlptlc restrlc- 
ted probtem Is very welt suited to the qualitative discussion of trajectories and 
to obtaining Information on the general behavlour of a three-body system. 

- It may also be weLL suited to feasibltlty studies on transfer orbits from one 
cetestla1 body to another, as for Instance In problems of capture. 

- For the exact numerical computation of transfers It Is a disadvantage that the 
two attracting centers are assumed to move on exact Kepler orbits. If this assump- 
tion Is not satisfied. one couLd use, at the beginning of the trip. KS-regularlza- 
tion centered at the earth and switch at a convenient Instant to KS-reguLarlzatlon 
centered at the moon. We have no experience about the numerical, behavlour of such a 
method. 

- It sh0ul.d be mentioned In this connection that A. Deprlt and R. A. Broucke [15] 
have suggested this idea in the special case of the 2-dImensIonaL restricted clrcu- 
lar problem by using Levi-Clvita's transformation. They have deveLoped a simple set 
of formulae containing a switching parameter. The generalization of such a proce- 
dure to 3-dImensiona motion and to KS-transformation Is obvious. 
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4. EXPERIMENTS CONCERNING NUMERICAL ERRORS 

by C.A. Burdet 

4.1 Configuration of the reference orbit 
(with which aLL numericaL experiments have been performed) 

At the time this paper Is being written, complete results of numerical experl- 
ments are only avaiLabLe for unperturbed and circular Kepler orbits (eccentricity 
= 0) and we shall therefore restrict our presentation to this special case. 

In order to put the 3-dimensionab KS-regularization (cf. 1.2.1) into operation 
and to investigate its numericaL behaviour, we choose a circuLar trajectory with 
orbital plane in general position. 

The gravitational parameter M was set equal, to -1 in (1,51) and the radius 
of the orbit Is -I . 

Exact initial conditions: 

X4 = .36235 77544 g , 2, = -.5035a 28673 7 , 
x+ = .93203 90859 7 Gi, = 0 , .I9578 27303 , 

0 . xj = 8 x3 = .a4147 09848 0 . 
(4>1) 

The corresponding CircuLar orbit has an inclination with respect to the x,,x+ - 
pLane measuring roughLy 57O, 

From the above conditions, we derive the folLowing formuLae for the motion of 
our particLe: 

x, = .36235 77544 g * cost - .50358 28673 1 + sin t , 

x1 = .93203 90859 7 e cos t f .I9578 27303 0 * sin t 

xj = .84147 09848 0 * Sin t .' 
(4,2) 

t is the physicaL time. 

Furthermore, we have for the radial distance r and the true anomaly '4 the 

fobLowing exact expressions: 

rsE4 (4,3) 

'Q - t (434) 

4.2 Numerical. integration of the equations of motion 

A) CLassIcaL equations of Kepber motion. Our system of differential equations Is 
composed of 6 first order equations which read 



Lj;- -5, 
(i = V,3) 

where 

r = I- &? * 

(4,5) 

(496) 

We denote the solution of (4,5) obtained with numerical integration by: 

cl% I (i= 4,2,3) 

initial conditions are given in (4,I). 

B) Regularized equations of motion. The four parametric coordinates u,,u,,u,,u~ 
and the physIcaL time t are computed from a system of 9 first order differential 
equations which read 

(1,74)(1,83) u; -y I 
(j = 4,2,3,4) (497) 

Vj’ - -tUj, 

(1,57)(1,45) tLbu!. . 
F -4 J (0) 

Here the independent variable is the fictitious time s ; after numerical inte- 
gration the physical coordinates are obtained from 

1 I x, - u, - u+ - uj '+u; , 

(1,441 x1 = 2 (u,uz- Us%) 8 (4,9) 

X) = 2 ( u,up + u,u,) , 

and the velocities from 

(1,98) 

with 

. 
x, = 3 l&u,' - u,u: - u,u; + UYd) , 

x2 = r - (u,u: + u2 u: - l4,u: - UY4) , 

x3 = r 1 (t&u: + lA,u; +u,u:+ U,U~ '1 I 

(4, IO) 

(1,451 r= GuT . (4,111 

We denote the numerical value of the above coordinates obtained by numerical 
integration by: 

-3 xi , 

for the velocities: 

and for the physical time: 
t . 

r=3 
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It should be emphasized that throughout integration we constantly make use of 
the exact initial value &q'w 3 In the equations of motion (1,74). 

The initial conditions for the parametric coordinates and velocities are taken 
from the Left-hand version of (1,47) by choosing u1 - 0 and from (1,48). 

Thus, we have at our disposal the numerical VSlUeS of 

- the solution dXi for the classical case, 

- the solution ..gxc s ,*,t for the regularized case, 

- and the solution uxi which denotes values of coordinates of the exact analyt- 

ical solution (4,2). 

Comparison of numerical solutions with the exact analytical solution was es- 
tablished for the distance r and true anomaly 'p, in both classical 'and regular- 
ized cases. We computed r and 14 from the Cartesian coordinates cl xi and 

r.9 xi respectively by projecting the point xi onto the orbital plane of the ex- 

act solution. The results are denoted in the sequel by 

r cl I cl’4 ; rcgr 8 "9 '4 respectively. 

Furthermore cyr , CXY 
denote the exact values (4,3),(4,4). 

Numerical errors can now be defined as follows: 
:for the classical solution: ----^----_---------------- 

clAr (t) - rlr (t) - exr<t) , (4,121 

=,A y (t) - cty (t'i - exy(t) , (4913) 

for the solution of the regularized system: ______-____-----_------------------ ---___- 

,.*,,A' lre3t) - rc3rb) - rrrL,t) , (4,14) 

rr3AyL3t) = roq Y(S) - ex I (red) , (4,15) 

I.e. regularized coordinates -3 r and ro3 Y are opposed to values .,r 
and l x Y 

of the exact solution taken at the computed time rc3t . 

We also determined the Influence of numerical errors on the most important of 
all elements of the orbit, namely the semi-major axis a; values of cla, -9 a 

yield the following errors: 

,,Aa(t) - cl a(t) - 1 , 

r.qAaLe,t) = rc3aLe,t1 - 4 . 

(4,16) 

(4,17) 

They were computed, during integration, for various values of time, from the corre- 
sponding values of the physical coordinates xi and velocities Gi . 
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ALL experiments were performed on a Control Data 1604-A computer using ftoat- 
lng point arithmetic with 244 decimaL pLaces and symmetric rounding. 

The differentiaL equations were integrated with the standard Runge-Kutta meth- 
od of order 4. 

4.3 Description and resuLts of the numericaL experiments 

In the foLLowing figures, the unit on the time axis corresponds to one period 
of revoLution of the exact KepLer orbit, i.e. 27 m 6.28 units of t . 

We describe two experiments: 

A) Long term experiment. For both the classical, and the reguLarized case, we choose 
a step size such that integration of one whoLe revolution is accompLished in 
10 * 2T a 63 integration steps. 

This reLativeLy Large vaLue of the step size ( = 0.1 ) cLearLy brings trunca- 
tion errors to the foreground so that round-off errors are -imperceptlbLe. 

x. 4.1 represents the error behaviour of r and a; the scale factor lm- 
posed by the errors in the cLassj.caL case is such that in the regubarized case the 
error curve for r can hardLy be distinguished from the error curve belonging 
to a. 

F&$. G shows errors of the true anomaLy. 

R) Short term experiment. In contrast to experiment A), experiment B) is primsrli:,' 
designed for throwing some Light on the behaviour of round-off errors. 

This was done by choosing a smaLLer mesh which corresponds to 50 * 2r m 314 

steps per revoLution (step size = 0.02). 

Here again resuLts have been plotted in B. 4.3 and Q. 4.4. - - 

In Q. 4.4, the curve ,csAy requires some exptenations; the main component 
of this error is due to the propagation of round-off errors in the integration of 
the physicaL time in equation (4,8). 

Integration of formula (4,a) with the above mentioned Runge-Kutta method is 
equivaLent to Simpson's ruLe; for two consecutive vaLues t, and t,,, , we have a 
reLation of the type 

t reg n+l - rrgtn + h.F(s) , 

where F(s) is a function determined by the numericaL method of Integration. 
Looking at the right-hand sides of (4,8) and (4.11) we see that, on account of or- 
bitaL stability of KepLer motion, the vaLue of F(s) remains very cLose to 1 and 
is a smooth function of s . At each integration step the addition at the right-hand 
side of (4,la) is rounded thus creating a cumuLative propagation of round-off 
errors and thereby erroneous vaLues of -3 t . 
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Fig. 4.1. Long term experiment: TotaL error in distance and semi-major axis. 

Q. 4.2. - Long term experiment: Total error in true anomaLy. 
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PJ$. 4.3. Short term experiment: TotaL error In distance and semi-major axis. 

m. 4.4. Short term experiment: TotaL error in true anomaLy. 
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However it should be emphasized that such a propagation of round-off errors 
whiLe integrating a perturbed Kepler motion, Is expected onLy If the phJsicaL time 

Is integrated with formuLa (1,94) of the second procedure (cf. 1.3.2). This propa- 
gation no Longer exists if physical time is integrated with the companion procedure 
of section 1.3.3, since only the perturbation of time is numerically integrated. 

4.4 Conclusions 

- The above experiments present numericab integrations of the coordinates xi 

and conseqnentLy do not test the methods deveLoped In chapter 1 and chapter 2 which 
only require integration of the perturbations of eLements Uj, pj . 

- However it has become evident that regubarized methods are SignificantLy more 
stable than cLassicaL ones, during numericaL integration; experiments have corrobo- 
rated the theoreticaL considerations of section 1.7.1 and they show that the advan- 
tage of reguLarization outlined there is more pronounced than expected. 

- Further studies (not pubLished here) concerning eLLipticaL orbits show.that 
this behaviour aLso occurs in such cases; for higher vaLues of the eccentricity, 
this beneficent tendency becomes even more significant. 

- Theoretical investigations on such error behaviours are subject of a forthcom- 
ing thesis in which separation of truncation and round-off errors, as well, as per- 
turbed motion wiLL be discussed. 
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